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ABSTRACT

The unsteady aerodynamics of the proposed delta planform,

high cross range, shuttle orbiters, are investigated. It is

found that these vehicles are subject to five unsteady-flow

phenomena that could compromise the flight dynamics.

They are as follows:

· Leeside shock-induced separation

* Sudden leading-edge stall

* Vortex burst

* Bow shock-flap shock interaction

· Forebody vorticity

Trajectory shaping is seen as the most powerful means of

avoiding detrimental effects of the stall phenomena; how-

ever, stall must be fixed or controlled when traversing the

stall region. Other phenomena may be controlled by care-

fully programmed control deflections and some configuration

modifications. Ways to alter the occurrence of the various

flow conditions are explored.

A companion study of the aeroelastic stability of typical boost

configurations indicates that both parallel- and series-boost

configurations will be subject to unsteady aerodynamic effects

that could cause aerodynamic undamping of one or more of

the low-frequency bending modes.
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Section 1

INTRODUCTION

The high cross range, delta wing, space shuttle configurations present the flight dy-

namicist with a challenging set of flight conditions. These vehicles must fly at speeds

from hypersonic down to low subsonic, they must traverse altitudes from orbit to sea

level, and are required to fly at angles of attack from zero to as high as 50 deg in some

cases. The angle of attack requirements probably cause the most severe aerodynamic

stability problems since the vehicle is stalled, or, what is worse, nearly stalled, for

much of the trajectory. There is the danger of experiencing a sudden, discontinuous

change in stability when flying near incipient stall (either stalled or unstalled) which

will raise havoc with the flight dynamics.

The effects of flow separation and other similar unsteady flow phenomena have been

under study for quite some time at Lockheed (e.g., Refs. 1-17). Quasi-steady tech-

niques have been used extensively and with a great degree of success for the predic-

tion of the dynamic effects of a variety of unsteady flow phenomena. Perhaps the most

notable success has been the application of these techniques in the prediction of the

aerodynamic damping of the first few elastic modes of the Apollo-Saturn family of

boost vehicles. The predictions agreed so well with experiment (Refs. 2, 18, 19) for

the Saturn I booster that this technique was used to predict the damping of all further

Saturns (Ref. 20), thus eliminating the need for further complicated elastic model

tests (e.g., Ref. 18).

For these reasons, Lockheed was chosen by the NASA Manned Spacecraft Center to

investigate the unsteady aerodynamics of the high cross range, delta planform, shuttle

vehicles. This work, reported herein, is exploratory in nature. Possible problem

areas are identified, their impact on the flight dynamics is explored, and fixes are

suggested.

1-1
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The major portion of this report deals with the North American Rockwell (NAR) delta

orbiter. This is wholly the result of the availability of wind tunnel data at the time of

the study. The problems discussed are by no means peculiar to the NAR orbiter. They

are, in fact, common to the various delta wing designs, the only difference being minor

shifts of the ranges of the instabilities.

1-2
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Section 2

DISCUSSION

Generally the various delta orbiters follow a similar angle of attack-Mach number pro-

file (Fig. 1 and Ref. 21). Entry occurs at a high initial angle of attack (up to 53 deg).

At M ~ 20.0 pitchover to between 20 deg and 35 deg is accomplished where a bank

angle program is initiated to achieve the required cross range. This continues to

M w 7.0 where pitchover to the subsonic cruise attitude, which varies between 5 deg

and 10 deg, is initiated. The pitchover maneuver may last down to M Z 1.0. A very

important part of the trajectory is flown at high angle of attack and high Mach number.

It is quite possible to arrive at some very erroneous conclusions if one approaches the

high a -M regime with Newtonian theory in mind. Leeside effects are not negligible as

Seegmiller's excellent flow photographs demonstrate (Fig. 2 and Ref. 22). At moderate

angle of attack a significant region of attached flow exists on the leeward side of the

delta wing (Fig. 2a). Also relatively strong reattachment zones may be seen on the

sides of the fuselage at all angles of attack. Furthermore, a reattachment zone exists

on the leeward fuselage, which, like the region of attached flow on the wing, is sensi-

tive to yaw angle.* As angle of attack is increased the wing separation grows until

nearly the entire wing - in fact, nearly the entire leeside of the vehicle - is separated

(Figs. 2b and 2c). However, this does not occur until very high angles of attack.

These salient features of the leeside flow are illustrated in Fig. 3. The strong leeside

flows have a significant, sometimes a dominant, effect on orbiter stability as the fol-

lowing discussion will demonstrate.

2.1 LEESIDE SHOCK INDUCED SEPARATION

The surface flow patterns presented by Cross (Ref. 23) suggest a number of distinct

flows on the leeside of a delta wing at hypersonic speeds (Fig. 4). At low angles of

*Note the asymmetry of both due to the negative yaw angle in Fig. 2a.

2-1
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MACH NUMBER, M

Fig. 1 Comparison of Entry Attitudes
Orbiters (Ref. 21)

for Proposed Delta Planform Shuttle

2-2

LOCKHEED MISSILES & SPACE COMPANY

60

0
LU
0

0s1

0
z
A:



i.J LMSC-D243938 

••-.*• • ' - . . • • . r » T » - ^ T + r > 

-

" 

i 

/. 

V 

1 
1 

1 
.. 1 

(a) a = 15 DEG, (3 = -5 DEG 
[•?"•"••" ' —-»'<'» . i . m — ^ i i H . • ! ! < ! • iw«>A IW. IL • » , . , i , i . , i .J,,JI. i / i - j a u M 

. ^ i # 

L . t r t h . » ^ u . . . - J J . - W » , : l i i M i i - • l? ' IW 

(b) a = 30 DEG, (3=0 DEG 

' B * . ' l * l " ' " ••r*^~- »-»'».•• I H ' ^ I U ^ H I m i l l i. .'••,»• j wt^-.* ' W W 

; n . i i i 

(c) a = 45 DEG ,(3=0 DEG 

Fig. 2 Hypersonic Leeside Oil Flow Photographs on NAR Orbi ter , M = 7.4 (Ref. 22) 

2-3 

L O C K H E E D MISSILES & SPACE COMPANY 

aiw.il


LMSC-D243938

BODY VORTICES

FLOW SEPARATION

Fig. 3 Hypersonic Leeside Flow Field
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attack the flow converging from opposite wing panels (in the case of the pure delta

wing) or from wing and fuselage (in the case of the shuttle) is turned parallel to the

free stream by a weak shock (Type 1). When the angle of attack is great enough to

cause the wing leading edge shock to detach the embedded terminal leeside shock be-

comes strong enough to separate the boundary layer (Type 2). That is, the subsonic

flow aft of the detached shock expands around the leeward leading edge reattaining

supersonic speeds. The flow is still constrained to turn downstream near the root as

before. This turning is accomplished by a strong shock that causes the boundary layer

to separate. The wake begins to affect the flow patterns at higher angle of attack,

causing a secondary separation (Type 3). This is undoubtedly promoted by the thick,

laminar, leeside boundary layer. As angle of attack is increased further the leeward

boundary layer is weakened. This couples with the increased leeside expansion to

promote separation. The separation region, therefore, grows until it reaches the

leading edge (Type 4). This type of flow is somewhat similar to the subsonic delta

wing flow with a vortex bound to the leading edge. Increasing the angle of attack still

further results in a breakdown or burst of the bound vortex near the trailing edge.

Finally, at still larger angles of attack, the leeward flow separation takes on a com-

plicated three-dimensional, wake-like character (Type 5).

The changes of flow type correlates with discontinuities in the a -dependence of the

terminal shock position (Fig. 5). Of course, the delta wing space shuttle orbiter will

experience similar flow phenomena (compare Figs. 5 and 6).* The data seem to indi-

cate the possibility of a hysteresis region associated with the occurrence of shock

induced separation. The angle of attack for shock detachment correlates with a for

first occurrence of shock induced separation (Fig. 6) and also with the angle of attack

where the wing pitching moment slope discontinuity occurs (Fig. 7). The change to a

more stable pitching moment slope is the result of increased subsonic type leading edge

*The data were measured on a double tail configuration (Ref. 22). However, the
relative spanwise shock position (bs/b) was measured at a chord station that ap-
peared to be unaffected by the leading edge-fuselage interaction or by the wing-tail
interaction; that is, where the separation line was relatively straight.

2-6
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Fig. 6 Hypersonic Leeside Flow Boundaries, NAR Delta Orbiter at M= 7.4 (Ref. 22)
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(b) LIFT INCREMENTS

Fig. 7 (Cont.)
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suction when the wing bow shock detaches. In addition there is a reduction of the lift

over the wing area aft of separation (see sketches in Fig. 7a). Due to the increasing

leading edge sweep towards the trailing edge, the center of pressure is more aft for

the lift gain (due to L.E. suction) than for the lift loss (due to shock induced pressure

increase aft of separation line). Thus, the wing pitching moment becomes more stable

(Fig. 7a) although the incremental lift remains nearly linear (Fig. 7b).

This lift redistribution also explains the nonlinear roll characteristics. As the body is

yawed the shock induced separation becomes asymmetric (Fig. 2). The separation

grows on the leeward side giving a negative incremental lift, and shrinks on the wind-

ward side causing a positive incremental lift. The result is a stable (negative) incre-

mental roll moment of larger magnitude than for attached flow. When leading edge

separation occurs the growth of the negative lift increment is arrested and a less nega-

tive Cjp results (Fig. 8). Thus, the nonlinearity in the roll curve indicates the

occurrence of leading edge separation (Fig. 9). Likewise, a nonlinearity in the incre-

mental wing pitching moment occurs due to leading edge separation, although the dis-

continuity is less distinct than that for the roll moment characteristics. Thus, the

c -M range of shock induced separation may be obtained directly from the static data.

It appears that this flow condition is of great practical importance as the orbiter will

transverse this ac-M region (Fig. 10).

Shock induced separation is characterized by an extreme (maximum) sensitivity of

shock position and wing loading to angle to attack. This is undoubtedly due to the sen-

sitivity of the boundary layer, hence the separation, to angle of attack. The dominance

of viscous effects is demonstrated by the poor agreement between the actual surface

pressure measurements and inviscid predictions from an equivalent solid body (Ref. 23

and Fig. 11). The implied assumption of zero pressure gradient normal to the wing

surface is invalid for both separated and reattaching flow regions. This dominance of

viscous effects indicates that the separation extent, and thus the wing loads, will be

extremely sensitive to all factors affecting boundary layer strength (e. g., angle of

attack, yaw angle, Reynolds number, pitch rate, yaw rate, etc.). The dominance of

viscous effects will have a particularly strong impact on the dynamic characteristics.

2-11
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Fig. 8 Wing-Induced Rolling Moment Derivative NAR Orbiter, M = 7.4 (Ref. 26)
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Fig. 11 Comparison of Theoretical and Experimental Spanwise Pressure Distri-
butions on Leeside of Delta Wing at Hypersonic Speeds,M = 10. 16 (Ref. 23)
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The fundamental principle in the application of quasi-steady theory to the dynamics of

bodies dominated by separated flow is that of the time lag (Refs. 1 to 17). In the case

of shock induced separation the time lag due to the finite convection speed within the

boundary layer is amplified by accelerated flow effects, which change the boundary

layer strength. Because of this lag, one can apply the so called reversed reactions

rule. That is, if the induced load is statically stabilizing it will be undamping dynami-

cally. This is illustrated simply in Fig. 12, using the classic example of nose induced

separation. It is shown that as the body pitches downward through or = 0 a residual

flare load occurs that tends to drive the motion (is undamping). Statically the separa-

tion induced flare load is, of course, stabilizing. Since the induced flare load results

from a separation asymmetry generated at the nose, and since the convection speed

within the separated region (U) is finite, the load at a (t) = 0 (residual load) is the

result of flow conditions generated earlier when a = a (t - At) where At = P/U.

It was shown earlier that the shock induced separation produced a statically stabilizing

contribution to the pitching and roll moments. Consequently, the shuttle vehicle will

experience degraded pitch and roll damping as the results of shock induced separation.

Likewise, a damping degradation will be caused by the leading edge separation. Lead-

ing edge separation at high Mach numbers is similar to subsonic delta wing flow; in

both cases a vortex is bound to the wing leading edge. Lambourne (Ref. 29) has shown

that the leading edge vortex position lags dynamically (Fig. 13). If one assumes it is

the crossflow velocity at the leading edge that sets the vortex position,* then the lag will

produce static roll stability and roll undamping. Lamborne et al. have also measured

the time lag required for the vortex to reach its steady state position (Ref. 30). These

results indicate that the vortex travels downstream with free stream velocity (Fig. 14).

By applying the shock induced time lag and accelerated flow effect derived in Ref. 15

(from the data of Ref. 31) to the crossflow normal to the leading edge, and using free

stream speed for the vortex convection velocity also at supersonic Mach numbers

(measured for subsonic Mach numbers in Ref. 30), it is possible to get-an estimate of

the leeward side contribution to the roll damping. The estimated lee side damping

(Cfp tan 5q),obcained by assuming that the large statically stabilizing roll derivative

*This is consistent with subsonic L. E. separation on two-dimensional airfoils (Ref. 15)
as will be discussed in detail later.
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Fig. 12 Steady and Unsteady Flow Patterns of Nose-Induced Separation
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Fig. 13 Comparison of Steady and Unsteady Vortex Positions (Ref. 29)

2-18

LOCKHEED MISSILES & SPACE COMPANY

0.8

0.6

' 0.4

0.2

0

O STATIC
A DYNAMIC - UPSTROKE

V DYNAMIC - DOWNSTROKE

a = 17.8 DEG

/ \4 a = 15 DEG

* \ a = 9 DEG

= 3 DEG

I

I I I

le b d--



LMSC-D243928

1.1

!.0

0.9

0.8

0.7

0.6

CLOUD OF DATA

0.5 I I
0 1.0 2.0 3.0

U
At-

Fig. 14 Vortex Position as Function of Time for Plunging Delta Wing (Ref. 30)
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measured in wind tunnel tests (Fig. 9) is in totality the result of the separation induced

loads, is in Fig. 15 compared to the windward side damping derivative (-Cp ) as given

by hypersonic small disturbance theory (Ref. 32). It is evident the roll undamping can

result due to shock induced separation, and for the trajectory given in Ref. 28 it could

exist over a considerable Mach number range (Fig. 16). While the results are only

approximate, they do demonstrate that shock induced separation could cause roll un-

damping of the delta orbiter.

For a mid- or high-wing vehicle, shock induced separation can occur on the windward

side even for supersonic leading edge conditions (Refs. 33 and 34, Fig. 17). The asso-

ciated force changes in the wing body juncture could have a decisive influence on lateral

vehicle dynamics. For the low wing vehicles, however, its effects are small compared

to the other leeside flow separations. Even if the body-wing juncture is shaped so it

becomes a flow streamline, there will still be flow separations, as Charwat has shown

(Ref. 35), usually involving formation of corner vortices (Ref. 36). Fins often form

such parallel corners with body or wing, with separation and vortex formations as the

usual results (Refs. 37 and 38). These viscous corner interactions have, in general,

more impact on heating than on vehicle stability and control.

2.2 SUDDEN LEADING EDGE STALL

When the Mach number normal to the leading edge is slightly less than unity (M = 2.0

for NAR shuttle) the separation can suddenly switch from the shock induced variety to

leading edge separation with a corresponding discontinuous change in wing loading.

This phenomenon is analogous to the switch between transonic flow attachment and

leading edge stall and is, therefore, dependent upon the airfoil section configuration

(Ref. 39). Typical boundaries for sudden leading edge stall are shown in Fig. 18 for

a practical airfoil section. The disconcerting feature of this plot is that the jump is

from an aft shock induced separation (transonic L.E. attachment) to L. E. separation,

which implies a very large change in loading.
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Fig. 165 Estimated Roll Damping Characteristics at M = 6. 0, NAR Orbiter
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Fig. 17 Windward Side Wing Body Hypersonic Flow Field (Ref. 33)
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For some rather thin airfoils the flow was observed to oscillate between L. E. separa-

tion and transonic attachment followed by a region where the terminal normal shock

position was unsteady (Fig. 19). This behavior is reminiscent of the results of

Robertson and Chevalier (Ref. 40). They observed that the flow aft of the shoulder of

a cone-cylinder body alternated between totally separated and attached. The body of

revolution results are simply the three-dimensional analog to the airfoil results.

The discontinuous jump from attached to separated flow occurs when the terminal

normal shock enters the near nose region with its adverse pressure gradient. At some

point the shock induced pressure rise, coupled with the near nose adverse pressure

gradient, is just too much for the boundary layer, and separation jumps to the shoulder

(in the case of the cone-cylinder) or to the point where the boundary layer encounters a

pressure gradient that it can tolerate. The similarity between the two- and three-

dimensional flows is illustrated in Fig. 20. Both result in large discontinuous, stati-

cally stabilizing, pitching moments when the sudden nose stall is established. For the

cone-cylinder body it has been shown that dynamically the jump will lag the body mo-

tion due mainly to the accelerated flow relief of the adverse pressure gradient, and to

a lesser extent due to the delay of boundary layer buildup on the leeward side (as the

result of a finite convection speed in the boundary layer, Refs. 4 and 5). Likewise,

pitch rate induced camber and accelerated flow effects have a large influence on the

jump to leading edge stall, perhaps even larger than their influence on regular (low

speed) dynamic airfoil stall (Refs. 14 to 16 and 41). The jump represents an infinitely

stable moment derivative which results in infinite undamping for infinitesimal ampli-

tude oscillation at the jump angle of attack. However, as oscillation amplitude is in-

creased the undamping becomes finite due to the finite moment derivatives on either

side of the jump (Refs. 4 and 5). Thus, the damping is a function of oscillation ampli-

tude (Fig. 21a). It has been shown that the experimentally observed undamping of the

Saturn I vehicle with a Jupiter nose cone (Refs. 5 and 42) was the result of sudden

separation (Fig. 21b).

On the swept wing a mixed flow condition can result (Fig. 22, Ref. 43). That is, the

inner portion of the wing may have laminar L. E. separation while the turbulent flow over
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Fig. 21 Dynamic Effects of Sudden Separation

2-28

LOCKHEED MISSILES & SPACE COMPANY

O
U

U-
z

0
0

z

a aa crit
M'" M crit

I I I I

1.2

0.8

0.4

Uu
U-

O

Z

Cl
0

0
1.8



LMSC-D243938
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TERMI NAL
SHOCK

Fig. 22 Flow Breakdown at M = 1.05 Showing Region of
Outboard Attached Flow (Ref. 43)
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the outer wing leading edge is attached with shock induced separation occurring a short

distance downstream. In the unsteady case the demarkation line between the flow condi-

tions will oscillate spanwise as the wing pitches or plunges. There will undoubtedly be

a random (motion independent) oscillation superimposed on the motion dependent oscilla-

tion. It is likely that the motion dependent oscillation of this separation boundary was

the cause of the large amplitude bending response measured on the wing of the earlier

straight wing shuttle (Figs. 23 and 24, Refs. 44 and 45). Likewise, the spanwise,

motion dependent, oscillation of the demarkation line can degrade roll damping of the

delta wing shuttle. This separation phenomenon also serves to couple the effects of

pitch, yaw, and roll motions.

The mixed separated-attached flow condition has not, to the knowledge of the authors,

been observed on any of the delta orbiters (possibly because no one has really looked

for it), but it is certainly possible that it could occur. It is important to determine

whether it is there or not, as its effects can be disastrous, and there are ways to

alleviate these effects and possibly avoid the flow phenomena altogether, as will be

discussed later.*

2.3 VORTEX BURST

It is well known that vortex lift is a major portion of the lift on delta wings at subsonic

speeds. Polhamus' "turned-up" leading edge suction predicts vortex lift and drag quite

well (Refs. 46 and 47). However, as yet there is no similarly simple means of predict-

ing vortex burst which has drastic effects on delta wing characteristics (Fig. 25 and

Ref. 48). It remains a well documented but still not fully understood phenomenon.

Ludwieg (Ref. 49) showed that a cylindrical vortex experienced spiral instablility if

the peripheral to axial velocity ratio exceeded the value 1. 12, i.e., the helix angle of

the fluid particles on the vortex boundary exceeded 48 deg. Benjamin (Ref. 50) demon-

strates that vortex breakdown is simply the transition between two stable rotating flow

states, similar to the Rankin-Huginot shock or the hydraulic jump; i. e., it is a transi-

tion between supercritical and subcritical flow states. Harvey (Ref. 51) thought that

*See section "Avoiding the Problems."

2-30

LOCKHEED MISSILES & SPACE COMPANY



LMSC-D243938

O NO FLUTTER

- LOW DAMPING

O STALL FLUTTER

g BENDING INSTABILITY

_ _ _ _ _ _ _ O-_ _ _ _ _ _ _ _ _ _ _ _ _1 .0

O 0.8

0.6 

'- 04

0

0.2

0 4 8 12 16 20
a (DEG)

Fig. 23 Measured Isolated Data Point for Bending Instability (Ref. 44)
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Fig. 24 Effect of Mach Number on Damping (Ref. 45)
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his experiments verified Benjamin's hypothesis, whereas Sarpkaya finds his experimental

results to indicate that the breakdown is an instability phenomenon (Ref. 52). Petersohn

(Ref. 53) also finds that Ludwieg's stability criterion applies, and that the effect of vis-

cosity, which was neglected by Ludwieg, is simply to cause the instability to start in

the center of the vortex rather than at the edge. Hall's results (Ref. 54) also support

Ludwieg's instability hypothesis. His description of "axial flow in vortex stops and

reverses as if hitting an obstacle" at vortex breakdown agrees with Elle's concept that

failing downstream transport in the vortex core is the cause of breakdown (Ref. 55).

Bossel uses this concept, together with Hall's results, to define a critical velocity

ratio of 2, i. e., instability results when the helix angle is larger than 54. 8 deg

(Ref. 56). This is in better agreement with experimental results than Ludwieg's

value of 48 deg. In the case of a leading edge vortex one would think that the vortex

together with its image, needed to assure zero flow through the wing surface, forms

a vortex pair similar to that treated by Crow (Ref. 57), in which case spiral instability

via or without an interim stage leads to a breakdown to large scale turbulence. Thus,

it appears that vortex breakdown is an instability phenomenon somewhat similar to

boundary layer transition. That is, adverse pressure gradients will have a dominant

influence, and large dynamic effects of convective time lag and accelerated flow are

to be expected.

When leading edge vortex breakdown occurs over the delta wing, a loss of lift due

to the decreased suction results (Ref. 48 and Fig. 26), usually also resulting in

reduced longitudinal and lateral stability (Fig. 25). There has, therefore, been ex-

tensive experimental research aimed at defining the vortex breakdown phenomenon for

delta wings. Lambourne showed that the delay of vortex breakdown with increasing

leading edge sweep could be scaled by using the angle the leading edge forms with the

free stream velocity vector (Ref. 58 and Fig. 27). He found also that vortex break-

down is relatively insensitive to Reynolds number. (As Ludwieg's inviscid analysis

predicts experimentally observed vortex bursts, this result is not unexpected.) Side-

slip effects on vortex breakdown could probably be accounted for by adding the yaw

angle to Lambourne's scaling (Fig. 27). The effect of yaw is, of course, to cause

earlier breakdown on the windward wing with its less effective sweep angle (Fig. 28

and Refs. 48 and 59).
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The vortex breakdown is very sensitive to angle of attack, moving almost jump-wise
from trailing edge to 2/3 chord (Fig. 28 and Ref. 60), at least for high sweep angles.

Lowson finds that he has to "undershoot" angle of attack to bring vortex breakdown

back to the "upstroke" position, i. e.., there is an a-hysteresis (Fig. 30 and Ref. 61).

He also finds that the vortex breakdown is asymmetric, i. e., at different axial posi-

tions for right and left half span. Which side gets the earlier breakdown is a random

event, but once established the asymmetry prevails throughout the angle of attack

range. The distance axially between the two breakdowns was in his case approximately

the same as their spanwise separation distance. Lowson speculates that his asymme-

try may be limited to highly swept delta wings where the two breakdowns get close to

each other. This is verified by others' results (Refs. 48 and 60).

The sensitivity to angle of attack remains high also for vortex breakdown further for-

ward on the wing (see Figs. 29 and 30, and also Fig. 31, Ref. 62). This a-sensitivity

implies that the down-going wing during roll will get earlier breakdown due to the roll

rate induced angle of attack, causing a roll moment that will sustain the roll rate, i. e.,

an undamping effect. Vortex breakdown plays the same role for delta wings as nose

stall does for airfoils. One can, therefore, expect that pitch rate induced camber and

accelerated flow effects, which have proven to have a powerful influence on dynamic

stall (Refs. 14 to 16 and 41) also will dominate dynamic vortex breakdown. This is

verified by experiments with cambered delta wings (Fig. 32 and Ref. 58). At transonic

speeds the terminal shock will cause vortex breakdown, again creating a situation simi-

lar to dynamic airfoil stall (Fig. 33 and Ref. 58, compared to Ref. 15). Not only does

vortex breakdown cause drastically increased static pressures (Fig. 26), the increase

of fluctuating pressure level is even more dramatic due to the large scale turbulence

associated with vortex breakdown (Fig. 34 and Ref. 63). It should be pointed out that

vortex breakdown is not limited to extremely large angles of attack. The Anglo-French

Concorde has experienced it at somewhat abnormal landing conditions (Ref. 64 and

Fig. 35). A "wave-rider" configuration shows nonlinear lateral characteristics due to

vortex breakdown already at ac = 17 deg and 1 = 2 deg (Fig. 36 and Ref. 65).

While vortex burst is sensitive to both planform and section shape, planform shape

is the dominant parameter (compare Figs. 37a and 37b). Furthermore, leading edge
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Fig. 30 Hysteresis and Unstable Vortex Burst Locations (Ref. 61)
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sweep is the dominant planform effect (Fig. 38). Thus,yaw, which effectively changes

windward and leeward side sweep, is a degree of freedom that will have a great im-

pact on the vehicle dynamics. This is especially true when there are tail surfaces

and a fuselage with which the vortices can interact as in the case of the space shuttle

vehicle. Some early lateral-directional stability results on the NAR orbiter (Ref. 66)

show nonlinear roll, yaw, and side force coefficients with possible hysteresis loops

for the wing-body combination (Fig. 39a). Likewise, the incremental effect of adding

rolled out tip fins is nonlinear with possible hysteresis loops (Fig. 39b), and the pitch

plane characteristics show the typical nonlinearities resulting from vortex burst

(Fig. 39c). Yaw locks burst near the apex of the windward wing and causes it to move

aft on the leeward wing (Refs. 48 and 59). The result is a reduced lift on the windward

wing and an increase on the leeward wing (Fig. 40a). Likewise, the fuselage interac-

tion results in a loss of windward and an increase of leeward suction. This explains

the large positive Cp3 near 3 =0 (and the correspondingly less negative Cn 3 and

more negative Cyo3 (Fig. 39a). The addition of the tip fins not only gives additional

surfaces for the vortex burst phenomenon to work on, but they also affect burst loca-

tion. Thus, vortex burst is fixed at the leeward fin-wing juncture causing a negative

incremental wing loading which dominates ACl/ making it negative (Figs. 39b and

40b). The windward fin loads are larger than those on the leeward fin due to the more

extensive windward side vortex burst, thus causing a positive ACyp and a negative

ACnp . As : is increased further the burst induced load variation becomes negligi-

ble and the attached flow fin effects become dominant (e. g., -tACi, +ACn, - ACy,

Fig. 39b).

The nonlinear interference effects of vortex burst are reminiscent of the nonlinear

interference loads caused by the attachment of the vortices emanating from the wing

fuselage juncture of the straight wing orbiter (Fig. 41 and Ref. 67). The result was

stable nonzero yaw trim at M = 0.6 and bang-bang yaw characteristics at M = 0.25

and 1.5 with /3-hysteresis near /3 = 0 and an unstable yaw trim for /3 = 4 dog at

M = 0.25 (Fig. 42). This undoubtedly contributed to the disastrous results experienced

in the subscale, free flight tests of the pitchover maneuver (Ref. 68).
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Vortex effects are not restricted to delta wing vehicles. The Lockheed delta body

configuration (the only proposed lifting body orbiter) shows the typical nonlinear pitch

and yaw moment characteristics of vortex lift (Ref. 69 and Fig. 43). The oil flow

photograph in Fig. 44a shows the beginning of leading edge vortex formation over the

rolled out tip fin emanating at the fin-body juncture. At a = 25 deg (Fig. 44b) the

vortex has burst and the scrubbing patterns from the large unstable vorticies are

evident.

Vortex burst is a phenomenon common to all the delta orbiter configurations. It is

certainly to be avoided considering the associated nonlinear characteristics and ad-

verse dynamic effects. Fortunately, all the proposed shuttle vehicles fly at angles of

attack well below those for severe vortex burst effects. Furthermore, the slightly

ogee planform of the shuttle delta wings tends to delay the occurrence of burst and

also makes the burst process less violent, i. e., less prone to cause large discontinu-

ous changes of the aerodynamic characteristics. On the other hand, vortex burst is

sensitive to back pressure, such as would be produced by the deflection of a trailing

edge control surface, and a careful analysis of the problem is needed. This will be

discussed in detail in the next section along with other control interference effects.

2.4 CONTROL INTERFERENCE

Up until now the effect of back pressure on the leeside flow field of the delta wing has

not been considered. It is well known that the extent of shock induced separation is

sensitive to back pressure (Ref. 70). Flap controls will often cause boundary layer

separation, especially in hypersonic low density flow, where less than 10 deg flap

deflection often will cause boundary layer separation (Refs. 70 to 73 and Fig. 45).

Thus, the deflection of a trailing edge control surface will affect the extent of shock

induced separation. Such back pressure effects are of practical concern since it is

desirable to control the shuttle with leeward control deflections, wherever possible,

in order to minimize control surface heating. Data obtained on the NAR orbiter

(Refs. 24 and 74) show an elevon effectiveness greater than Newtonian for small de-

flections (6 = -10 deg) at low angles of attack (Fig. 46). This is the likely result of
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shock induced separation of the leeside flow. The separation extent (for fixed flap

deflection 6 = -10 deg) increases initially with angle of attack. However, the back

pressure effect from the flap causes the transition between shock induced separation

and leading edge stall to start near the flap and progress forward with increasing angle

of attack (see inset sketch in Fig. 46); at high angle of attack the positive lift produced

by the vortices outweighs the negative lift generated by the flap induced flow separation

over the inner wing surface. The result is a loss of flap effectiveness below the

Newtonian windward side value (i.e., a more stable AC
m

than predicted by Newtonian

theory for 6 = -10 deg). At the high deflection 6 = 30 deg the mixed flow field may

still occur and the overall force data are not sensitive enough to detect it. Generally,

the leeside effects seem to vary less drastically and Newtonian theory seems to predict

the trends rather well.

Experimental results also indicate that roll reversal occurs as a result of the back-

pressure-induced change in flow field (Ref. 25 and Fig. 47). If hysteresis does occur

when switching between the various separated flow types (as indicated in Fig. 6), then

a residual control force will remain after the control deflection is removed. The con-

trol force is made up of two components: the force on the control surface itself and

the induced load on the wing (due to a control induced change in the flow field (separa-

tion type) on the wing. The former will go away when the control deflection is removed.

The latter will persist (if flow field hysteresis is present) until the angle of attack is

reduced sufficiently to get out of the hysteresis region (Fig. 48).

As one would expect, vortex burst is also sensitive to back pressure. In agreement

with Ludwieg's theory, Hummel finds that supplying an adverse pressure gradient by

using an obstacle one chord length downstream of the trailing edge on the right half

span causes vortex breakdown (Fig. 49 and Ref. 48). An upward flap deflection, e. g.,

for a roll maneuver, will of course have a similar effect, thus causing a "super re-

sponse" to a roll command. Thus, control deflection will induce burst where ordinarily

it would not occur. Furthermore, vortex burst is definitely associated with hysteresis

(Fig. 30), and subsonic control-induced burst is a problem of serious concern. There

is experimental evidence of control-induced burst on a proposed shuttle configuration
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2-65

LOCKHEED MISSILES & SPACE COMPANY

-Cp

0

TOP VIEW



LMSC-D243938

(Fig. 50 and Ref. 24). At M = 0.6 vortex burst is caused by the left elevon at =

12 deg for a combined pitch-roll command which results in 6L = -45 deg. After

burst, there is a reduction in control effectiveness until burst is caused also by the

right elevon. Nearly all control force is lost when burst occurs near the wing apex.

At M = 1. 5 the characteristics are similar but less drastic. At M = 2.0 the

typical shock induced leeside separation characteristics are evident (compare Fig. 48

with Fig. 46).

This loss of control effectiveness during vortex burst has been observed in flight

(Fig. 51 and Ref. 75). Vortex burst was observed to occur over the outboard wing

between a = 15 deg and a = 18 deg. At this time increased pitch control activity

was necessary (Fig. 51b). Likewise, increased yaw and roll deflections were

necessary (Fig. 51c) to maintain control.

Even though the shuttle vehicle may largely avoid the vortex burst and shock induced

separation, control deflection will cause the realization of both, with the attendant

undesirable dynamic effects. The NAR orbiter will certainly experience shock induced

separation as the result of control deflection, as it flies just below the lower bound of

the shock induced separated flow region (Fig. 52).

Incidentally, there is one other control interference effect worth mentioning, and that

is bow shock-flap shock interaction (Refs. 11 and 75 to 77). Leeward control deflec-

tions do not cause bow shock-flap shock interactions, but if the vehicle is trimmed

near zero elevator deflection, as indicated from the test data of Ref. 25 (Fig. 53a),

and a sufficiently large aileron deflection is required, it could happen (Fig. 53b). This

can result in aerodynamic undamping in pitch (Fig. 53c) which is coupled aerodynami-

cally with the two other angular degrees of freedom. Of course, one can through dili-

gent design assure that large aileron deflections are not necessary (in this case 6 -

15 deg is acceptable). But one must recognize the problem in order to be sure to

avoid it. Even for smaller flap deflections than those causing the drastic flap shock-

bow shock interaction, the curved bow shock can through the generated inviscid shear

flow, the "entropy wake," generate loads on aft body and flap (Ref. 78). "Entropy
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vortices" generated by discontinuities in the shock envelope are another means of gen-

erating loads on the aft body, as Maikapar has shown for a half-cone lifting entry

geometry (Ref. 79).

Pitch-roll coupling through bow shock induced crossflow, in addition to the dynamic

pressure deficit, could be another entropy wake effect, according to Hart's findings

(Ref. 80). The Edney-effect, i.e., bow shock-wing shock interaction, is another

interference effect that can cause problems (Ref. 81). However, the problem is

mainly one of increased heating and is not causing any substantial vehicle dynamics

problem. In addition, it is not likely to occur as readily for the delta winged vehicles

as for the straight winged ones, where it is unavoidable unless the angle of attack is

very, very large (Refs. 82 and 83).

2.5 FOREBODY VORTICES

It is now well documented that long slender bodies start to develop free vortices at

moderate angles of attack, and that the vortex shedding becomes asymmetric at some

high angle of attack (Refs. 84 to 86) with the result that large side forces and yawing

moments are generated at zero sideslip (Refs. 87 to 90 and Fig. 54). The phenomenon

shows a-hysteresis (Fig. 55 and Ref. 88). The direction of the side force and moment

is determined by minute model asymmetries as it seems to be body-fixed (Fig. 56 and

Ref. 89). The magnitude is determined by the nose geometry, a slender nose giving

larger magnitudes than a more blunt nose, and by the nose boundary layer, mainly

because of the decreased wake width (Ref. 89). As the angle of attack is increased

more vortices are shed, the axial separation distance being that fixing a separation in

time in the cross flow plane determined by von Karman's theory. At some angle of

attack below ac = 90 deg this space-time equivalence breaks down and von Karman

type vortex shedding starts (Refs. 86 and 89). As a result of this, the direction of the

side moment can change sign several times for a long body as vortices are added with

increased a ( Fig. 57 and Refs. 85 and 87) . An asymmetric roughness strip on the nose

fixes the asymmetry and can cause greatly increased side forces (and moments) (Fig. 58

and Ref. 88). Even the unintentional body asymmetry completely dominates over roll
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Fig. 54 Side Force at Zero Yaw as Function of Angle-of-Attack for
Cone-Cylinder Body at M = 2 and Rd = 2. 6 x 106 (Ref. 87)
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Fig. 55 Side Moment Coefficients Measured on Tomahawk With ±15-deg Fin Cant (Ref. 88)
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Fig. 57 Side Moment at Zero Yaw for Cone-Cylinder at M = 0. 5 (Ref. 87)
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rate effects (Fig. 59 and Ref. 87). For a blunt nose the steady asymmetric vortex

geometry is more difficult to establish, i. e., the vortices usually show some degree

of unsteadiness (Ref. 90). Pick shows how the vortex induced asymmetric aerodynamic

characteristics can be determined through simple analytic expressions (Ref. 89).

It has been recognized for some time now that free vortices from the slender forebody

of modern fighters can cause adverse lateral characteristics strong enough to make the

flat spin modes unrecoverable (Fig. 60 and Refs. 91 to 93). In one investigation the

adverse yawing moment characteristics were very repeatable (Fig. 61 and Ref. 92),

whereas in other experimental investigations large differences between repeat runs

have been found (Fig. 62 and Refs. 93, 94). Even if the cross section is noncircular,

rounded corners usually lead to problems with large jumpwise changes in aerodynamic

characteristics when the crossflow changes from subcritical to supercritical (Ref. 95).

In aeroballistics and reentry body industry the effects of asymmetry have long been

recognized (Refs. 96 to 99), resulting in roll-lock in and coning motions which are

the low angle of attack equivalent to the aircraft spins (Refs. 91 to 93). The asymme-

try can in this case be a combination of mass and geometric asymmetries (Refs. 98

and 100). At slightly higher angles of attack the tilting of the symmetric vortex pair

shed from a slender forebody can provide the driving force. It has been shown that

the induced crossflow at the nose sets the vortex asymmetry, thus accounting for the

major portion of the induced side moment (Fig. 63, Refs. 101 and 102). The remainder

of the side load is probably the result of unequal vortex strength.

In addition to the local effect at the nose, the forebody vortices can affect the vertical

tail loads.* The oilflow photograph in Fig. 2a shows stagnation region on the leeward

fuselage which is the result of the flow entrained by the forebody vortices stagnating

on the upper surface (Fig. 3). Incidentally, the photograph also shows a constant

azimuth for the stagnation region, i. e., the "tilting" of the forebody vortices is set at

the nose. The entrained flow constitutes a region of excess velocity (Fig. 64). Thus,

*Such forebody vortices have been found to cause roll lock-in due to interaction with
folded out fins on a square bomb (Ref. 103) and have also been observed to interact
with flap induced flow separation regions (Ref. 104).
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4 (DEG)

Fig. 59 Effect of Roll Orientation and Roll Rate on Side Force at
ca = 18 deg and f = 0 for Cone-Cylinder at M = 0. 5
(Ref. 87)
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Fig. 60 Yaw Rate Damping Characteristics
Several High Performance Fighter

as Function of Angle of Attack for
Aircraft (Ref. 91)

2-79

LOCKHEED MISSILES & SPACE COMPANY



O P = 0 RUN
A p = 0 RERUN
-- p = 5DEG

I

JB~~X

Ad I

_% _ 

I
ir

20 40

- at %

O ..

A

60 80
a (DEG)

Il

co
Co
co,CDW0
cO

Fig. 61 Example of Yawing Moments at P = 0 (Ref. 92)

0.04 -.

c
U

U.u,

0
U

z
ill

0I

0
z

0

tI
o0
Q

-0.04

0 90

·- _. 
_ _ _ _ _ ~ ~ 1

I I l



0.07
0.06

0.05

0.04

C
n

0.03

0.02
0.01

-0.01

0.02 10 20 30 40 506070 8090
a (DEG)

(a) VARIATION OF YAWING-MOMENT COEFFICIENT WITH
ANGLE-OF-ATTACK; SYMBOLS INDICATE VALUES OBTAINED
IN SEVERAL REPEAT TESTS

0.08

0.06

0.04

0.02

y\t.D 4'"-LOW ANGLES-OF-ATTACK

/HIGH ANGLES-OF-ATTACK

Cn -0.02

-0.04

-0.06

-0.08

-U. 1023U THREE-VIEW SKETCH OF CONFIGURATION WITH LONG
0 10 20 30 40 50 60 70 80 90OINTED NOSE

a (DEG

(b) VARIATION OF STATIC YAWING-MOMENT COEFFICIENT
WITH ANGLE-OF-ATTACK FOR SEVERAL MODELS OF THE
CONFIGURATION; B = 0 DEG

Fig. 62 Lack of Repeatability of Side Moments Induced by Free Forebody Vortices at Zero Yaw (Ref. 93)
w
CO

- U

o00

Ar I nI



LMSC-D24393 8

10 20 30 40

a (DEG)

Fig. 63 Correlation of Dynamic Vortex Induced Yaw
Moment (Ref. 101)
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Fig. 64 Effect of Forebody Vorticity on Velocity Profile at Tail
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when the vehicle yaws the vertical tail is subjected to decreasing velocities (i.e., de-

creasing dynamic pressures). The velocity gradient, however, subjects one side of

the wedge tail to higher dynamic pressures than the other. This is similar to the

wedge fin submerged in the shear flow generated by nose induced separation (Fig. 65

and Ref. 105); a load is induced in the direction of decreasing velocity. Likewise, for

positive p a positive induced side force will result. Increasing the wedge angle ef-

fectively increases the average differential dynamic pressure, which increases the

induced load (Fig. 66 and Ref. 24). The induced load may or may not be larger than

the load component due to the local flow angle. In the case of the tail with drag brake

the induced load is large enough to cause a reversal in the incremental drag brake load

at M = 2.5 and to nearly eliminate it at M = 4. 6. This is not the result of an or-

dinary loss of tail effectiveness at high angle of attack due to body shielding. One

would expect the shielding effect to be the same for both the pure 10 deg wedge tail and

the tail with the simulated 70 deg drag brake. Certainly shielding effects would not

cause a reversal in the sign of the drag brake load. What is more likely is that the

local load vanishes or nearly vanishes due to shielding, allowing the vortex induced

load to dominate. The effect of forebody vortices, both the local effect at the nose

and the induced effect at the tail, are statically destablizing in yaw (Fig. 67 and Ref. 25).

Thus, the induced tail load will add dynamic stability due to the finite time lag required

to convect the vortices from the nose to tail. However, static instability is in itself a

serious problem that can result in a sustained spin (Ref. 27). Furthermore, in the

case of the shuttle it would require large amounts of reaction control propellant to

maintain stability (Refs. 106 and 107). Thus, it appears highly desirable to eliminate

or minimize these effects, if at all possible.

2.6 AVOIDING THE PROBLEMS

Perhaps the best way to eliminate these stability problems is to traverse the regions

of instability quickly, and to avoid flying close to an unstable flow boundary (see

Fig. 52); thus avoiding involuntary realization of adverse unsteady flow effects due to

control deflection, gust, etc. From the preceding discussions the flow phenomena to

avoid are:

1. High speed shock induced separation

2. Sudden leading edge stall
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Fig. 65 Effect of Shear Flow on Fin-Induced Pitching Moment (Ref. 105)
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3. Vortex burst

4. Bow shock-flap shock interaction

5. Forebody vortices

The last item, the effect of forebody vortices, cannot be avoided by trajectory shaping

alone, since the shuttle must fly at high angles of attack because of aerodynamic

heating considerations.

A fictitious entry trajectory is superimposed on the boundaries of the NAR entry cor-

ridor as an illustration of one way of minimizing the deleterious effects of unsteady

flow phenomena (Fig. 68). The trajectory is fictitious in the sense that it was con-

structed without regard to meeting cross range and aerodynamic heating requirements.*

It is only an illustration of the philosophy of avoiding unfavorable flow regions. At any

rate, the philosophy is to stay above the region of shock induced separation as long as

possible; then to traverse it quickly and remain well below the lower bound to avoid

control induced separation. In addition, it may be necessary to limit control deflec-

tion. Thus, the trajectory resembles the ones in Fig. 52 except for staying farther

away from the lower bound of the shock induced separation region. The second pass-

age through the shock induced separation region should be made at low angle of attack.

It appears that by so doing it may be possible to avoid the region of sudden L. E. stall

(Figs. 18 and 19, Ref. 39). At lower Mach number a return to the baseline trajectory

seems permissible; however, it may be necessary to limit control deflection to avoid

control induced vortex burst.

An alternate scheme that might be applied to a reduced cross range trajectory

(Ref. 108) could be to stay above the shock induced separation region and below the

control power limit, thus reaching the subsonic cruise attitude at about M = 1.2

(alternate trajectory of Fig. 68). This, of course, supposes that a means can be

found for moving the aft center of gravity stability boundary upward. Both the stabil-

ity boundary and the control limit seem to be associated with vortex burst; either sub-

sonic burst, or breakdown of the diffuse hypersonic L.E. vortex. As the location of

*If cross range requirements were relaxed it would certainly simplify the flight
dynamics problem.
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the vortex burst boundary between M = 1.2 and 2.0 is unknown, the alternate

trajectory could still traverse the region of vortex burst.

It might be possible to gain leeway for a trajectory like this by increasing the leading

edge sweep, thereby lowering the upper angle of attack boundary for shock-induced

separation (see Figs. 5, 6, and 68). This would also delay vortex burst, thereby

widening the space shuttle reentry corridor by raising the stability and control bound-

: aricZ t&0 higher angles of attack since increasing sweep angle delays subsonic vortex

burst (Fig. 27 and Ref. 58). There is no reason to believe it would do otherwise at

higher speeds. When L. E. stall occurs the leading edge flow is subsonic, and in-

creascd sweep will energize the vortex core flow to delay burst just as in the low speed

case. Increasing sweep also eliminates the dangerous mixed leading edge flow condition

shown earlier in Fig. 22 (Ref. 109 and Fig. 69).

As the vortex breakdown moves aft with increasing sweep, it should be possible to find

a double-delta planform that does not get vortex burst forward of the trailing edge for

the operational a-pf-range of the space shuttle vehicle. That is, the inner wing is given

high enough sweep and the less swept outer wing is made short enough to keep vortex

breakdowns off the wing area. McMahon and Kohlman (Refs. 60, 110, and 111) have

tested double delta planforms and find that the vortex burst is delayed. Their inner

wing is very short - they correctly name it a strake - and the outer wing vortex is by

far the stronger vortex, wrapping the strake vortex around itself starting already at

ao = 7 deg (Fig. 70a). This results in smooth CL - and Cm-characteristics up until

vortex burst for the combined ogee-type leading edge vortex. It is interesting to note

that the added forebody strake or inner delta wing induces substantial lift on the aft

(main delta) wing surface, balancing the forebody strake lift (Fig. 70b). Sachs et al.

investigate a similar double-delta planform (Ref. 112), although the difference in sweep

angles -between inner and outer wings is larger, resulting in larger reshaping of the com-

bined vortex (Fig. 70c). When the inner wing is large, i.e., not a strake, the inner vor-

tex is dominant and will wrap the outer vortex around itself at some angle of attack con-

siderably below that forinner vortex breakdown. This lift-off of the outer vortex
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deloads the outer wing and is as disastrous as vortex burst in regard to vehicle dynam-

ics. This phenomenon was investigated extensively on the Swedish double-delta fighter

"Draken" (Fig. 71) by one of the authors. The angle of attack for this interaction could

be delayed by separating inner and outer vortices more in the spanwise direction, or

by decreasing the strength of the inner wing vortex, e.g., by shortening the chord or

by using nose droop or camber. Even if outer wing vortex lift-off occurs, flap controls

on the inner wing would still remain effective, contrary to what is the case for delta

wing vortex burst. It seems likely that some planform between that of the Swedish

"Draken" (Fig. 71) and those tried by Wendtz and others (Refs. 68 to 70) should pro-

vide the needed solution for the space shuttle vehicle. It would also solve the alternat-

ing separated-attached leading edge problem discussed earlier (provided the inner wing

is not just a strake) by fixing the demarcation line between attached and separated

leading edge flow.

As vortex breakdown is caused by or associated with a stagnation of the core flow, and

increasing sweep energizes the core flow, one would assume that a planform in which

the sweep is increasing towards the trailing edge would delay vortex burst, and it does

(Fig. 37 and Ref. 62). However, the effect is small compared to the beneficial effect

of a double delta or ogee planform (compare wings 2 and 5 in Fig. 37) in which case

better static stability characteristics is an additional bonus. Strategically placed tan-

gential blowing slots could delay the vortex breakdown further (Refs. 114 and 115).

This delay of vortex burst to a higher angle of attack means also a gain in lift. This

is not always true if the delay is accomplished by delaying the initial vortex formation,

e.g., by leading edge droop or apex drooping (Refs. 116 and 117). It appears, how-

ever, that a combination of curving the leading edge planform and convexing the upper

surface could lead to some optimum design (Refs. 62, 65, 118).

The bow shock-flap shock interaction is avoided if windward side elevon deflections

are limited such that they will not intercept the bow shock even under combined

elevator-ailercn deflections.
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The effect of forebody vortices is not easy to avoid completely as was discussed earlier.

However, it is quite possible to fix the vortex separation point, thus eliminating the

asymmetric vortex shedding and thereby the major portion of the destabilizing load.

This may be accomplished by fuselage shaping (Ref. 119), strakes (Ref. 106 and Fig.

72), or a combination of both. The strakes can be integrated into the design of an effi-

cient double delta configuration. This has the added advantage of delaying vortex burst

and maintaining good control effectiveness to high angles of attack, as discussed pre-

viously. Strakes will only extend the range for symmetric vortex shedding to higher

angles of attack. Even a low aspect ratio delta wing starts shedding asymmetric

vortices at high a (Ref. 120) as does also a rectangular wing (Ref. 84). Maltby et al.

(Ref. 84) have shown that a flat top cross-section with sloping bottom sides, e.g.,

triangular and semi-circular sections, works the same way as the flat plate, i.e.,

have the same a-range for symmetric vortex shedding. However, it takes only a

small disturbance in the top centerline, such as that caused by a spline (Fig. 73),to

force early asymmetric vortex shedding. A detail in cockpit design could cause such

an effect, as all that is needed is a short flow fence. The flow cannot find a stable

stagnation condition on top of the centerline spline (Fig. 73a). As a result, the stag-

nation point moves to one side of the centerline spline forcing an asymmetry into the

vortex geometry (Fig. 73b). This disturbance causes the vortex pair to deform into

the more stable space-time equivalence to the von Karman vortex shedding (Fig. 73c).

There is, of course, a critical spline height associated with this phenomenon. For

larger heights than the critical the spline starts acting as a splitter plate, stabilizing

the occurrence of two symmetric vortices. It is quite possible that minute differences

in cockpit design rather than in wing and aft body design caused the different charac-

teristics shown in Fig. 74 for three high performance aircraft geometries (Ref. 94).

Not only are surface details on the top side of the forebody important, also the nose-

tip geometry is critical. Nosetip bluntness has been shown to have large influence on

the asymmetric vortex shedding off ogive-cylinder bodies (Fig. 75 and Ref. 89). The

same effect has been observed for a high performance aircraft (Fig. 76 and Ref. 94).

If the nosetipJ is given a small asymmetric flat spot the direction of the asymmetric
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(a) UNSTABLE STAGNATION POINT FOR SYMMETRIC
VORTEX PAIR

(b) UNSTABLE ASYMMETRIC VORTEX PAIR
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(c) STABLE ASYMMETRIC VORTEX PAIR

Fig. 73 Mischievous Centerline Spline Effects on Vortex Shedding
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vortex shedding effect can be controlled as effectively as where an asymmetric strake

is used (Fig. 77). How sensitive the vortex shedding is to minute differences is demon-

strated by the side moment characteristics in Fig. 78 for several models with sup-

posedly identical nose design.* The variation between the side moment generated by

asymmetric vortex shedding for the models used is an order of magnitude larger than

the maximum capability of the rudder! In contrast, changing the wing plan form geome-

try greatly has a negligible effect.

Also ground wind loads on launch vehicles have shown this tremendous sensitivity to

nosetip geometry (Ref. 121). The similarity is not accidental, but rather supports

the space-time equivalence between steady asymmetric vortex shedding at high angles

of attack and the periodic von Karman vortex shedding at near 90 deg flow incidence.

It is the minute surface and geometry details that determine the birth process of the

vortex (Ref. 122), and thereby the future downstream development of the vortex with

associated induced aerodynamic loads. The process is irreversible, i. e., it is very

difficult to change the course of the vortex development after its "birth." These pro-

found effects of small changes in nose geometry are particularly disconcerting for

ablative noses.

Forebody strakes may not completely eliminate the directional instability, as one

shuttle contractor has shown (Fig. 80 and Ref. 106). The hard chine results represent

the effect of fixing vortex shedding locations. However, the symmetric vortex shedding

from the forebody can also induce significant adverse effects, especially when the vor-

tices can interact with a vertical tail. Only after the addition of a ventral fin was a

stable Cnp measured. Using a twin fin arrangement could possibly have eliminated the

symmetric vortex interference effect (illustrated in Fig. 64).

During the transition maneuver it will be necessary to fix the flow conditions over the

wing to avoid the possibility of experiencing snap roll. That is, when traversing the

flow boundaries it is likely that one wing will reestablish attached leading edge flow

before the other. The result may be an unprogrammed snap roll similar to that

*The small variation in Reynolds number has a negligible effect. Compare 1/10- and
1/15-scale models for which the Reynolds number is the same.
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experienced with the straight winged shuttle orbiter during the drop tests (Ref. 68).

Spoilers probably provide the simplest means of fixing separation. When the transition

maneuver has been completed down to subcritical angles of attack, the spoilers would

be retracted, causing instantaneous flow reattachment on both wings simultaneously.

The configuration modifications just discussed are summarized in Fig. 81. Like the

trajectory modifications, these are fictitious and are meant to illustrate philosophy

only. No evaluation of their effects on longitudinal stability, drag, center of gravity

location, etc., has been made. Strakes, spoilers, and ventral fins constitute the pre-

ferred modifications. The ventral fin (or fins) would have to be folding or jettisonable

for landing. If the ventral fin (or fins) prove undesirable from aerodynamic heating

considerations or negative dihedral effects (Ref. 123), it may be possible to achieve

directional stability with two vertical tails. If the cross range requirements could be

relaxed it might be possible to fly the vehicle at very high angles of attack ((x Z 45 deg)

over most of the trajectory and delay pitch-over to lower speeds as in the sample low

cross range trajectory (Fig. 68). This relaxes the lateral stability requirements

somewhat (Ref. 107) allowing a negative Cng at high Mach numbers.

2.7 EXPERIMENTAL PROGRAM

In order to implement the suggested configuration modifications, it will be necessary

to resort to wind tunnel tests. There is no other reliable means of determining the

effectiveness of the various fixes and the necessary gradients for design optimization.

There are no theoretical techniques that will predict the boundaries of the various per-

tinent flow conditions, although a great deal can be done with existing experimental

results.

The tests would consist of the usual configuration buildup with six component force and

moment data. The force data should be obtained for both increasing and decreasing

angles of attack when traversing a flow boundary to define hysteresis if it is present.

Six component data are essential because the cross coefficients give valuable insight

into the phenomenon. For instance, the occurrence of asymmetric forebody vortex
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shedding is accompanied by large side forces as the body is pitched, even at zero yaw.

Furthermore, it is essential that complete flow visualization results are obtained,

both shadowgraph coverage and surface flow visualization such as oil flow. Surface

flow visualization is a fast and reliable means of determining the boundaries between

the various flow types.

The most drastic variation of the various flow boundaries occurs between M = 0.5

and M = 6. 0. Thus, it is suggested that a so-called trisonic tunnel be used, at

least for the first preliminary investigations. Eventually the entire flight regime

must be well documented to assure that the vehicle will not inadvertently experience

any of the five undesirable flow conditions. Particular attention would have to be paid

to obtain widest possible Reynolds number coverage to provide much needed informa-

tion about the very difficult scaling problem.

In order to apply the test data to the transient flight conditions existing during the

pitch-over maneuver, it will probably be necessary to run some specialized static

tests with deformed models to supply needed input for a quasi-steady analysis of the

vehicle dynamics.
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Section 3

CONCLUSIONS

This study of the unsteady aerodynamics of the high cross range, delta planform,

shuttle orbiter indicates that the shuttle vehicle will be subject to five unsteady flow

phenomena which can have deleterious effects on the flight dynamics.

1. Leeside shock induced separation

2. Sudden leading edge stall

3. Vortex burst

4. Bow shock-flap shock interaction

5. Free forebody vortices

Furthermore, many of these undesirable flow conditions may be induced by control

deflection.

Because the shuttle enters at a high angle of attack (oa - 30 deg) and eventually must

pitch over to a low cruise angle of attack (a - 10 deg), it will necessarily traverse

at least one of the three stall regions (Items 1 through 3). This should be accomplished

as quickly as possible. It is essential that stall be controlled (e. g., via spoilers) such

that simultaneous reattachment can be accomplished on both wings after traversing

stall. This prevents the disastrous snap roll which can result when the flow attaches

on one wing while remaining stalled on the other. If necessary, the separation bound-

aries may be altered by wing planform or section modifications.

The unsteady flow regimes must be well mapped to insure that control deflection will

not cause stall. Combined elevator and aileron deflections are particularly dangerous

since they may induce stall on only one wing, again subjecting the vehicle to all the

dangers of asymmetric stall effects. Bow shock-flap shock interaction may also be

avoided by carefully programming control deflection.
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Much of the undesirable effects of forebody vortices can be eliminated by fixing vortex

locations. This is a relatively simple matter of shaping the body cross section or

adding strakes.

A careful review of the unsteady flow problems of the delta wing shuttle orbiters indi-

cates that there is every reason to believe that the problems can be dealt with

successfully.

It appears that the boost configurations, both parallel and series stage configurations,

will experience unsteady aerodynamic effects that could cause undamping of one or

more of the lower elastic modes.
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Section 4

RECOMMENDATIONS FOR FUTURE STUDY

The present study has documented several flow mechanisms with potentially disastrous
influence on the space shuttle vehicle dynamics. Various fixes have been outlined that
could minimize or possibly eliminate these detrimental effects. It remains to conduct
the experiments and further analysis needed to determine the effectiveness of suggested
fixes, and to determine the sensitivity of the effectiveness to various configuration vari-

ables, thus generating the inputs for configuration optimization. It is obvious that some
of the suggested fixes will conflict with basic stability and trim requirements, and that
the best possible compromise would have to be sought.

The suggested trajectory shaping reduces the time the space shuttle vehicle spends at
critical flight conditions. However, the transient conditions now become important.
Essentially, the delta wing vehicle will perform a transition maneuver similar to that
of the straight winged space shuttle vehicle. Vortex burst and reattachment of leading
edge flow play the same role for the delta wing as airfoil stall did for the straight wing.
Available experimental and theoretical results indicate that reestablishing attached
leading edge flow or steady leading edge vortex flow will be associated with the same
problems as the reestablishment of attached airfoil flow. The phenomena are associ-
ated with a-hysteresis and basic tendencies towards asymmetry with snap roll as likely
results during the transition maneuver.

For both vehicles, the delta winged as well as the straight winged space shuttle vehicle,
the obvious solution is to try to delay reestablishment of regular vortex flow and at-
tached flow, respectively, until the transition maneuver has been completed. This can
be done by use of spoilers and other flow separation devices which are popped up before
the transition maneuver is started and retracted when the cruising attitude has been
reached.
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On the surface, the program sketched above is rather straightforward. However,

some further scrutinizing reveals that such a well recognized problem as that of scal-

ing wind tunnel test data to full scale flight conditions can present formidable difficul-

ties. Already the scaling of steady separated flow is difficult, as is the scaling of

attached unsteady flow. In the present case we are faced with the problem of scaling

unsteady separated flow. Already in the case of two-dimensional flow, e. g., unsteady

airfoil stall, this can be quite difficult (Ref. 124). As the delta orbiter transition ma-

neuver takes place at high speeds, flight tests are more difficult, both technically and

economically, than for the subsonic transition maneuver of the straight winged space

shuttle (Ref. 68). Consequently, it becomes very important to devise a combined

theoretical-analytical approach to solve the scaling problem.

All the stability and control boundaries will be affected by rate effects. Also the design

optimization will be affected. For example, suppose the wing planform is altered to

avoid unsteady mixed flow, e. g., leading edge separation inboard and retarded separa-

tion outboard. When the vehicle rolls, the roll rate induced decelerating wall effect

(the mechanism responsible for stall overshoot, Refs. 14 to 16) will be the greatest

near the tip since the leading edge velocity is highest there (Ref. 15). This will result

in a longer delay of stall at the tip than at the root for the upward moving wing, and the

converse for the downward moving wing. Thus, the mixed flow pattern could reappear

dynamically. The induced force is upward at the tip of the ascending wing and down-

ward on the descending wing, thus driving the motion (i. e., it is undamping).

Perhaps the most fundamental problem associated with the unsteady aerodynamics of

delta wings is that of scaling of separated flow effects. The shock induced separation

is difficult to scale already for stationary flow on airfoils and straight wings (Refs. 125

to 127 and Fig. 82). It is only recently that a criterion for simulation of terminal

shock boundary layer interaction in two-dimensional subsonic-transonic flow was es-

tablished (Ref. 128). Whitehead has shown that transition has a drastic effect on con-

trol induced separation on delta wings (Ref. 77). Because the boundary layer approach

length varies along the span the leeside separating patterns will exhibit a spanwise

variation. Transition also has a significant effect on leading edge vortex formation

(Ref. 59 and Fig. 83). Thus, a wind tunnel test must simulate both the spanwise and
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chordwise position of transition, and at hypersonic down to subsonic speeds in the case

of the space shuttle vehicle.

The vortex shedding from slender forebodies is also sensitive to boundary layer condi-

tions, supercritical flow conditions, i.e., turbulent boundary layers, giving signifi-

cantly smaller induced side moments (Refs. 89 and 94, Fig. 84).

As boundary layer transition is very sensitive to accelerated flow effects, it is very

much affected by the vehicle motion (Refs. 129 and 130).

In the case of spoiler design great care has to be exercised that it will not revert to a

preseparation device (Refs. 5, 131, and 132). This presents a real problem when

covering the ao--M-range for the space shuttle vehicle, including the transient effects

during the transition maneuver. A "spoiler design" utilizing a flap located at quarter-

or midchord is probably the best way of avoiding these dangerous preseparation

effects.

In summary, three major problems must be solved to assure a safe transition from

orbit to cruise conditions for the shuttle vehicle. They are, in order of increasing

difficulty, as follows:

1. Documentation of stability and control boundaries for both static and dynamic

flight conditions.

2. A complete analysis of the unsteady aerodynamics of the shuttle vehicle

including effects of "fixes".

3. Development of means for scaling of both static and unsteady aerodynamic

characteristics.

The first item may be accomplished simply by performing the wind tunnel tests

described earlier in the main report.

The second item, however, requires some analysis. Quasi-steady techniques devel-

oped at LMSC have successfully predicted dynamic stall loops resulting from pitch
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rate induced stall overshoot (Refs. 14 to 16). These methods can be extended to the

delta wing, thus allowing computation of the rate induced delay of the various unsteady

stall boundaries, mixed flow conditions, etc. In addition, the rate induced effects on

the forebody vortices and their interaction with the tail must be described. This is

effectively an extension of earlier work on bodies of revolution (Refs. 1 to 5).

The third item, finally, requires a considerable amount of analysis and perhaps some

specialized testing. It seems prudent to first assess the impact of spanwise variation

in transition location on vehicle dynamics. This then provides the means for determi-

nation of the error band for the predicted full scale vehicle dynamics.

In summary, one needs to perform a study similar to the one just completed and re-

ported herein, with the emphasis shifted from a broad-brush look at the overall prob-

lems of the delta wing orbiter to a more quantitative analysis of the specific problems

associated with various modes of transition from orbit to atmospheric cruise conditions.

4-7

LOCKHEED MISSILES & SPACE COMPANY



LMSC-D243938

Section 5

REFERENCES

1. Woods, P. and Ericsson, L. E., "Aeroelastic Considerations in a Slender

Blunt-Nose, Multistage Rocket, " Aerospace Engineering, Vol. 21, No. 5,

May 1962, pp. 42-51.

2. Ericsson, L. E. and Reding, J. P., "Analysis of Flow Separation Effects on

the Dynamics of a Large Space Booster, " J. Spacecraft and Rockets, Vol. 2,

No. 4, July-August 1965, pp. 481-490.

3. Ericsson, L. E. and Reding, J. P., "Dynamics of Separated Flow Over Blunt

Bodies, " Lockheed Missiles & Space Company, Report 2-80-65-1, NASA

Contract NAS 8-5338, December 1965.

4. Ericsson, L. E., French, N. J., and Guenther, R. A., "The Aeroelastic

Characteristics of the Saturn 1B Launch Vehicle With Biconic Payload Shroud,"

Lockheed Missiles & Space Company, Report M-37-67-1, NASA Contract

NAS 8-11238, July 1967.

5. Ericsson, L. E., "Aeroelastic Instability Caused by Slender Payloads,"

J. Spacecraft and Rockets, Vol. 4, No. 1, January 1967, pp. 65-73.

6. Ericsson, L. E., and Reding, J. P., "Ablation Effects on Vehicle Dynamics,"

J. Spacecraft and Rockets, Vol. 3, No. 10, October 1966, pp. 1476-1483.

7. Reding, J. P., and Ericsson, L. E., "Loads on Bodies in Wakes, " J. Space-

craft and Rockets, Vol. 4, No. 4, April 1967, pp. 511-518.

8. Ericsson, L. E. and Reding, J. P., "Aerodynamic Effects of Bulbous Bases,"

NASA CR-1339, August 1969.

9. Ericsson, L. E. and Reding, J. P., "Re-entry Capsule Dynamics," J. of

Spacecraft and Rockets, Vol. 8, No. 6, June 1971, pp. 575-586.

5-1

LOCKHEED MISSILES & SPACE COMPANY



LMSC-D243938

10. Jecmen, D. M., Reding, J. P., and Ericsson, L. E., "An Application of

Automatic Carpet Plotting to Wind Tunnel Data Reduction," J. Spacecraft

and Rockets, Vol. 4, No. 3, March 1967, pp. 408-410.

11. Ericsson, L. E. and Reding, J. P., "Dynamic Stability Problems Associated

With Flare Stabilizers and Flap Controls, " J. Spacecraft and Rockets, Vol. 7,

No. 2, February 1970, pp. 132-137.

12. Ericsson, L. E., "Universal Scaling Laws for Hypersonic Nose Bluntness

Effects, " AIAA Journal, Vol. 7, No. 12, December 1969, pp. 2222-2227.

13. Ericsson, L. E., "&-Effects are Negligible at Hypersonic Speeds - Fact or

Fiction?, " Vol. 3, Proceeding of the 19th Congress of the International Astro-

nautical Federation, New York, 13-19 October 1968, pp. 547-561.

14. Ericsson, L. E. and Reding, J. P., "Unsteady Airfoil Stall, " NASA

CR 66787, July 1969.

15. Ericsson, L. E. and Reding, J. P., "Unsteady Airfoil Stall and Stall Flutter,"

NASA CR-111906, June 1971.

16. Ericsson, L. E. and Reding, J. P., "Unsteady Airfoil Stall, Review and

Extension, " Journal of Aircraft, Vol. 8, No. 8, August 1971, pp. 609-616.

17. Reding, J. P. and Ericsson, L. E., "Unsteady Aerodynamics of Manned

Space Vehicles; Past, Present, and Future, " Proceedings First Western

Space Congress, Santa Maria, California, October 27-29, 1970, pp. 882-

893.

18. Hanson, P. W. and Dogget, R. V., Jr., "Wind-Tunnel Measurements of

Aerodynamic Damping Derivatives of a Launch Vehicles Vibrating in Free-

Free Bending Modes at Mach Numbers from 0. 7 to 2.87 and Comparisons

With Theory, " NASA TND-1391 (1962).

19. Rainey, A. G., "Progress on the Launch Vehicle Buffeting Problem, " J.

Spacecraft and Rocket, Vol. 2, No. 3, May-June 1965, pp. 289-299.

20. Ericsson, L. E. and Reding, J. P., "Technical Summary Report, Aeroelastic

Characteristics of Saturn 1B and Saturn V Launch Vehicles, " Lockheed Missiles

and Space Company, Report M-37-67-5, Contract NAS 8-11238, December 1967.

5-2

LOCKHEED MISSILES & SPACE COMPANY



LMSC-D243938

21. Young, J. C., "Aerodynamic Comparisons of the Space Shuttle Phase B Two

Stage Fully Reusable Vehicles, " Aero-Configuration Working Group Meeting,

MSFC, Houston, Texas, 16 September 1971.

22. Seegmiller, H. L., "Surface Flow Visualization Investigation of a High Cross

Range Shuttle Configuration at a Mach Number of 7.4 and Several Reynolds

Numbers, " NASA SSPD-8, June 2, 1970.

23. Cross, E. J., "Analytical Investigation of the Expansion Flow Field over a

Delta Wing at Hypersonic Speeds, " ARL 68-0027, February 1968.

24. Foster, G., Graves, E., Mennell, R., Olsen, D. C. and Comeron, B.,

"Supersonic Stability and Control Characteristics of NR Delta Wing Orbiter,"

-134D/161B, NASA SADSAC DMS-DR-1096, May 1971.

25. Goldberg, G., Emery, C., Olsen, R., and Munnell, R., "Hypersonic Stability

and Control Investigation and Evaluation of Split Elevon Concept for Yaw Con-

trol for the 0. 00763 Scale NR Delta Wing Orbiter, NCR 134D/161B, " NASA

SADSAC DMS-DR-1095, May 1971.

26. Cleary, J. W., "Hypersonic Stability and Control Characteristics of a High-

Cross Range Orbital Vehicle, " NASA SSPD-7, May 22, 1970.

27. Weaver, J., Allen, E. C., and Glynn, J., "Static Stability and Control Inves-

tigation of NR Delta Wing (134D) and Straight Wing (130G) Space Shuttle

Orbiters, " NASA SADSAC DMS-DR-1076, March 1971.

28. Space Shuttle Aerodynamics Group, "North American Rockwell Space Shuttle

Program Aerodynamic Design Data Book, Volume II - Delta Wing Orbiter,

DB 2. 1. 5 - 13000-10," Space Division, North American Rockwell Corporation,

May 1971.

29. Lamborne, H. C., "Some Current and Proposed Investigations into the Flow

for Slender Delta and Other Wings in Unsteady Motion, " ARC 21844, April

30. Lamborne, N. C., Bryer, D. W., and Mayberg, J. F. M., "A Preliminary

Note on the Behavior of the Leading-Edge Vortices of a Delta Wing Following

a Sudden Change of Incidence, " NPL AERO Note 1006, March 13, 1962.

5-3

LOCKHEED MISSILES & SPACE COMPANY



LMSC-D243938

31. Jones, W. P., "Research on Unsteady Flow, " the Sixth Minta Martin Lecture,

Journal of Aerospace Sciences, Vol. 29, No. 3, March 1962, pp. 249-263.

32. Hayes, W. D. and Probstein, R. F., "Hypersonic Flow Theory, " Vol. 1,

Inviscid Flows, Academic Press, 1966, pp. 50-51.

33. Randall, R. E., Bell, D. R., and Burk, J. L., "Pressure Distribution Tests

on Several Sharp Leading Edge Wings, Bodies, and Body-wing Combinations at

Mach 5 and 8, " AEDC TN-60-173, September 1960.

34. Rainbird, W. J., Crabbe, R. S., Peake, D. J., and Meyer, R. F., "Some

Examples of Separation in Three-dimensional Flows, " Candian Aeronautics

and Space Journal, Vol. 12, No. 10, December 1966, pp. 409-423.

35. Charwat, A. F., and Redekopp, L. G., "Supersonic Interference Flow Along

the Corner of Intersecting Wedges, " AIAA Journal, Vol. 5, No. 3, March 1967,

pp. 480-488.

36. Watson, R. D. and Weinstein, L. M., "A Study of Hypersonic Corner Flow

Intersections, " AIAA 70-227 (1970).

37. Kaufman, L. G., Meckler, L., and Hartofilis, S. A., "An Investigation of

Flow Separation and Aerodynamic Controls at Hypersonic Speeds, " J. Aircraft,

Vol. 3, No. 6, Nov.-Dec. 1966, pp. 555-561.

38. Korkegi, R. H., "Viscous Interactions and Flight at High Mach Number,"

AIAA 70-781 (1970).

39. Lindsey, W. F., and Landrum, E. J., "Compilation of Information on the

Transonic Attachment of Flows at the Leading Edges of Airfoils, " NACA

TN 4204, February 1958.

40. Chevalier, H. L., and Robertson, J. E., "Pressure Fluctuations Resulting

From Alternating Flow Separation and Attachment at Transonic Speeds,"

AEDC TDR 63-204 (November 1963).

41. Ericsson, L. E. and Reding, J. P., "Dynamic Stall of Helicopter Blades,"

Preprint No. 422, 26th Annual Forum of the American Helicopter Society,

Washington, D.C., June 16-18, 1970.

5-4

LOCKHEED MISSILES & SPACE COMPANY



LMSC-D243938

42. Hanson, P. W. and Dogget, R. V., Jr., "Aerodynamic Damping and Buffet

Response of an Aeroelastic Model of the Saturn I Block II Launch Vehicle,"

NASA TND-2713, March 1965.

43. Rogers, E. W. E., Berry, C. J., and Townsend, J. E. C., "A Study of the

Effect of Leading Edge Modifications on the Flow Over a 50-Deg Sweptback

Wing at Transonic Speeds, " Great Brit. R&M No. 3270 (1962).

44. Goetz, R. C., "Exploratory Study of Buffet and Stall Flutter of Space Shuttle

Vehicle Wing Concepts, " NASA LWP-872, May 22, 1970.

45. Erickson, L. L., Gambucci, B. J., and Wilcox, P. R., "Initial Transition

Flutter Results for a Straight Wing Version of the Space Shuttle Vehicle,"

NASA SSPD-17, December 15, 1970.

46. Polhamus, E. C., "A Concept of the Vortex Lift of Sharp-Edge Wings Based

on a Leading Edge Suction Analogy, " NASA TND-3767, December 1966.

47. Polhamus, E. C., "Application of the Leading-Edge-Suction Analogy of Vortex

Lift to the Drag Due to Lift of Sharp-Edge Delta Wings, " NASA TND-4739.

48. Hummel, D., "Untersuchungen uber das Aufplatzen der Wirbel an schlanken

Deltaflugeln, " Z. Flugwiss 13 (1965), pp. 158-168.

49. Ludwieg, H., "Zur Erklarung der Instabilitat der uber angestellten Deltaflugeln

auftretenden freien Wirbelkerne, " Zeitschrift fur Flugwissenschaften, Vol. 10,

1962, pp. 242-249.

50. Benjamin, T. B., "Theory of the Vortex Breakdown Phenomenon, " J. Fluid

Mech., Vol. 14, 1962, pp. 593-629.

51. Harvey, J. K., "Some Observations of the Vortex Breakdown Phenomenon,"

J. Fluid Mech., Vol. 14, 1962, pp. 585-592.

52. Sarpkaya, T., "Vortex Breakdown in Swirling Conical Flows, " AIAA 71-52,

January 1971.

53. Peterschn, E., "The Stability Criterion for Vortices by Ludwieg and Its Appli-

cation to Some Experimental Results," FFA Report 119, The Aeronautical Re-

search Institute of Sweden, 1970.

5-5

LOCKHEED MISSILES & SPACE COMPANY



LMSC-D243938

54. Hall, M. G., "The Structure of Concentrated Vortex Cores, " Progress in

Aeronautical Sciences, Pergamon Press, London, Vol. 7, 1966, pp. 53-110.

55. Elle, B. J., "On the Breakdown at High Incidence of the Leading Edge Vortices

on Delta Wings, " J. Royal Aeronautical Society, Vol. 94, August 1960, pp. 491-

493.

56. Bossel, H. H., "Stagnation Criteria for Vortex Flows, " AIAA J., Vol. 6,

No. 6, June 1968, pp. 1192, 1193.

57. Crow, S. C., "Stability Theory for a Pair of Trailing Vortices, " AIAA 70-53,

January 1970.

58. Lambourne, N. C. and Bryer, D. W., "The Bursting of Leading-Edge Vortices -

Some Observations and Discussion of the Phenomenon, " Great Brit. R&M

No. 3282 (1962).

59. Hummel, D., "Experimentelle Untersuchung der Stromung auf der Saugseite

eines Schlanken Deltaflugels, " Zeitschrift fur Flugwissenschaften, Vol. 13,

No. 7, July 1965, pp. 247-252.

60. Wendtz, W. H., and Kohleman, D. L., "Vortex Breakdown on Slender Sharp-

Edged Wings, " AIAA 69-778, July 1969.

61. Lowson, M. V., "Some Experiments With Vortex Breakdown, " J. Royal Aero-

nautical Society, Vol. 68, May 1964, pp. 343-346.

62. Earnshaw, P. B., "Measurements of Vortex-Breakdown Position at Low Speed

on a Series of Sharp-Edged Symmetrical Models, " Great Brit. ARC CP No. 828

(1965).

63. Earnshaw, P. B., and Lawford, J. A., "Low-Speed Wind Tunnel Experiments

on a Series of Sharp-Edged Delta Wings, " Great Brit. RAE Tech. Note Aero

2780, August 1961.

64. Sforza, P. M., "Aircraft Vortices, Benign on Baleful?", Space-Aeronautics,

April 1970, pp. 42-48.

65. Keating, R. F. A. and Mayne, B. L., "Low-Speed Characteristics of Wave-

rider Wings, " Great Brit. RAE Tech. Rpt. 69051.

5-6

LOCKHEED MISSILES & SPACE COMPANY



LMSC-D243938

66. Malcolm, G. N., "Aerodynamic Characteristics of the North American Rock-

well Delta Wing Orbiter at Mach Numbers From .25 to 2. 0, " NASA SADSAC

DMS-DR-1078, November-December 1970.

67. Brownson, J. C. "Static Stability Characteristics of MSC Orbiter Preliminary

Tests at Mach No. 0. 25-2. 0," NASA SSPD-1, December 22, 1969.

68. Hamilton, E. J. and Ryals, W. G., "Review of 1/10 Scale Space Shuttle Air

Drop Test Results, " NASA MSC Internal Document 5-2950-1-NOV-126, June

24, 1970.

69. Donselman, R. W., "Data for the SS-9 Force Test of LMSC Orbiter Spacecraft

Configuration in the NASA MSFC 14 x 14-inch Wind Tunnel, " LMSC Report to

be published.

70. Needham, D. A., and Stollery, J. L., "Boundary Layer Separation in Hyper-

sonic Flow," AIAA 66-455, June 1966.

71. Holden, M. S., "Theoretical and Experimental Studies of Separated Flow In-

duced by Shock-Wave Boundary Layer Interaction, " AGARD Specialist Confer-

ence on Separated Flows, Rhode-Saint-Genese Belgium, 10-13 May 1966,

Conference Proceedings No. 4, pp. 153-180.

72. Marvin, J. G., Seegmiller, H. L., Lockman, W. K., Mateer, G. G.,

Pappas, C. C., and DeRose, C. E., "Surface Flow Patterns and Aerodynamic

Heating on Space Shuttle Vehicles, " Paper 71-594, AIAA 4th Fluid and Plasma

Dynamics Conference, Palo Alto, California, June 21-23, 1971.

73. Maltby, R. L. et al., Low Speed Flow Studies of the Vortex Patterns Above

Inclined Slender Bodies Using a New Smoke Technique, Great Brit. RAE-TN-

Aero-2482, November 1957.

74. Freeman, D. C., "Supersonic Aerodynamic Stability, Control, and Perform-

ance of a Modified NR-134D Orbiter Configuration, " NASA SADSAC DMS-DR-

1101, June 1971.

75. Rolls, L. S., Koenig, D. G., and Drinkwater, F. J., III, "Flight Investigation

of the Aerodynamic Properties of an Ogee Wing," NASA TND-3071, December

1965.

5-7

LOCKHEED MISSILES & SPACE COMPANY



LMSC-D243938

76. Morkovin, M. V., Donahue, J. C., and Larson, H. K., "Exploratory Investi-

gation of the Effects of Gas Injection Through a Porous Model on Separation,

Transition, Static Stability, and Control Effectiveness of a Blunt Entry Body at

Mach Number 7.3, " AIAA 68-27, January 1968, and Report ER 14598, Contract

NAS 2-3873, July 1967, Martin Marietta Corp.

77. Whitehead, A. H., Jr. and Keyes, J. W., "Flow Phenomenon and Separation

Over Delta Wings With Trailing-Edge Flaps at Mach 6, " AIAA Journal, Vol. 6,

No. 12, December 1968, pp. 2380-2387.

78. Ericsson, L. E., "Unsteady Aerodynamics of an Ablating Flared Body of

Revolution Including Effects of Entropy Gradient, " AIAA Journal, Vol. 6,

No. 12, December 1968, pp. 2395-2401.

79. Maikapar, G. E., "Aerodynamic Heating of Lifting Bodies, " Paper Re-126,

19th Congress of the International Astronautical Federation, New York,

13-19 October 1968.

80. Hart, H., "Wing/Tail Interference in Hypersonic Missile Configurations,"

8th Navy Symposium on Aeroballistics, Naval Weapons Center, Corona, Calif.,

May 6-8, 1969.

81. Edney, B. E., "Effects of Shock Impingement on the Heat Transfer Around

Blunt Bodies, " AIAA Journal, Vol. 6, No. 1, January 1968, pp. 15-21.

82. Katzen, E. D., Marvin, H. L., Seegmiller, H. L., Axelson, J. A., Brown-

son, J. J., Cleary, J. W., Kickman, W. K., and Kaattari, G. E., "Static

Aerodynamics, Flow Fields, and Aerodynamic Heating of Space Shuttle Orbiters,"

Space Transportation System Technology Symposium, Vol. I, NASA TM X-52576,

July 15-17, 1970.

83. Edney, B. E., "Shock Interference Heating and the Space Shuttle, " Space

Transportation System Technology Symposium, Vol. I, NASA TM X-52876,

July 15-17, 1970.

84. Maltby. R. L., et al., "Low Speed Flow Studies of the Vortex Patterns Above

Inclined Slender Bodies Using a New Smoke Technique," RAE-TN-AERO-2482,

November 1957.

5-8

LOCKHEED MISSILES & SPACE COMPANY



LMSC-D243938

85. Gapcynski, J. P., "An Experimental Investigation of the Flow Phenomena Over

Bodies at High Angles of Attack at a Mach Number of 2. 01, " NACA RML 55H29,

October 1955.

86. Fiechter, M., "Ujber Wirbelsysteme an schlanken Rotationskorpern und ihren

Einfluss auf die aerodynamischen Beiwerte, " Deutsch-Franzdsisches

Forchungsinstitut Saint-Louis, Bericht 10/66, December 1966.

87. Astraghji, E. G., "The Influence of Mach Number, Reynolds Number, Semi-

Nose Angle and Roll Rate on the Development of the Forces and Moments Over

a Series of Long Slender Bodies of Revolution at Incidence, " NAE Data Report

54510020, Ottawa, 1967.

88. Curry, W. H. and Reed, J. F., "Measurement of Maguns Effects on a Sound-

ing Rocket Model in a Supersonic Wind Tunnel," AIAA 66-754, September 1966.

89. Pick, G. S., "Investigation of Side Forces on Ogive-Cylinder Bodies at High

Angles of Attack in the M 0. 5 to 1. 1 Range, " AIAA 71-570, June 1971.

90. Hall, I. M., Roger, E. W. E., and Davis, B. M., "Experiments With Inclined

Blunt-Nosed Bodies at M= 2.45, " Great Brit. R&M No. 3218.

91. McElroy, G. E. and Sharp, P. S., "An Approach to Stall/Spin Development

and Test, " AIAA 71-772, July 1971.

92. Casteel, G. R. and Weyl, C. J., "A Design Approach to Provide Satisfactory

Spin Characteristics for a Modern Fighter Aircraft, " AIAA 70-928, July 1970.

93. Chambers, J. R. and Bowman, J. S., Jr., "Recent Experience With Tech-

niques for Prediction of Spin Characteristics of Fighter Aircraft, " Journal

of Aircraft, Vol. 8, No. 7, July 1971, pp. 548-553.

94. Chambers, J. R., Anglin, E. L., and Bowman, J. B., Jr., "Effects of

Pointed Nose on Spin Characteristics of a Fighter Airplane Model Including

Correlation With Theoretical Calculations, " NASA TN-D5921, September 1970.

95. Polhamus, E. C., "Effect of Flow Incidence and Reynolds Number on Low-

Speed Aerodynamic Characteristics of Several Non-circular Cylinders With

Applications to Directional Stability and Spinning," NASA TR R-29 (1959).

5-9

LOCKHEED MISSILES & SPACE COMPANY



LMSC-D243938

96. Nelson, R. L., "The Motions of Rolling Symmetrical Vehicles Referred to a

Body-Axis System, " NACA TN 3737 (1956).

97. Pettus, J. J., "Persistent Re-entry Vehicle Roll Resonance, " AIAA 67-49,

New York, 1966.

98. Price, D. A., Jr., "Sources, Mechanisms, and Control of Roll Resonance

Phenomena-for Sounding Rockets, " Journal of Spacecraft and Rockets, Vol. 4,

No. 11, November 1967, pp. 1516-1525.

99. Kanno, J. S., "Spin Induced Forced Resonant Behavior of a Ballistic Body

Reentering the Atmosphere, " Lockheed Missiles & Space Division, Report

LMSD 288139, Vol. 3, January 1960.

100. Price, D. A., Jr. and Ericsson, L. E., "A New Treatment of Roll Pitch

Coupling for Ballistic Re-entry Vehicles, " AIAA Journal, Vol. 8, No. 9,

September 1970, pp. 1608-1615.

101 Schiff, L. B., and Tobak, M., "Results from a New Wind-Tunnel Apparatus

for Studying Coning and Spinning Motions of Bodies of Revolution, " AIAA

Journal, Vol. 8, No. 11, November 1970, pp. 1953-1957.

102. Kuhn, G. D., Spangler, S. B., and Nielsen, J. N., "Theoretical Analysis of

Vortex Shedding from Bodies of Revolution in Coning Motion, " AIAA 70-52,

January 1970 (Also NASA CR 1440).

103. Lucero, E. F., "Pitch Control Effectiveness of Flap Controls Mounted on a

Body of Revolution, " 8th Navy Symposium on Aeroballistics, Naval Weapons

Center, Corona, California, 6-8 May 1969.

104. Hobbs, J., "A Study to Eliminate Flight Instabilities on a High-Drag Air-

Delivered Mine, " 8th Navy Symposium on Aeroballistics, Naval Weapons

Center, Corona, California, 6-8 May 1969.

105. Treon, S. L., "Effects of Nose-Cone Angle on the Transonic Aerodynamic

Characteristics of a Blunt Cone-Cylinder Body Having a Cylindrical Flared,

or Blunt-Finned Afterbody," NASA TMX-582, October 1961.

5-10

LOCKHEED MISSiLES & SPACE COMPANY



LMSC-D243938

106. Raymes, F., "Alternate Space Shuttle Concepts Study, Part II Tech. Summary,

Vol. I Orbiter Definitions," Contract NAS 9-11160, Grumman Report DRL M-010-

Line Item 11, B 3543RD-12, July 6, 1971.

107. Wawrzyniak, M. E., "To What Extent Should Space Shuttle Stability and Control

be Provided Through Stability Augmentation?", Space Transportation Systems

Technology Symposium, Volume I, NASA TMX-52876, July 15-17, 1970.

108. Stengel, R. F., "Strategies for Control of the Space Shuttle Transition," AIAA

Paper 71-923, August 1971.

109. Stanbrook, A. and Squire, L. C., "Possible Types of Flow at Swept Leading

Edges," The Aer. Quarterly, February 1964, pp. 72-82.

110. Wendtz, W. H., Jr. and McMahon, M. C., "An Experimental Investigation of

the Flow Fields About Delta and Double-Delta Wings at Low Speeds, " NASA

CR-521, August 1966.

111. Wendtz, W. H., Jr. and McMahon, M. C., "Further Experimental Investiga-

tions of Delta and Double-Delta Wing Flow Fields at Low Speeds, " NASA CR-

714, February 1967.

112. Sacks, A. H., Lundberg, R. E., and Hanson, C. W., "A Theoretical Investi-

gation of the Aerodynamics of Slender Wing-Body Combinations Exhibiting

Leading-Edge Separation, " NASA CR-719.

113. Jane's All The World's Aircraft, 1971, p. 191.

114. Cornish III, J. J., "High Lift Application of Spanwise Blowing, " ICAS 7th Con-

gress, Roma, Italy, September 14-18, 1970, Paper 70-09.

115. Dixon, C. J., "Lift Augmentation by Lateral Blowing Over a Lifting Surface,"

AIAA 69-193, 1969.

116. Squire, L. C., Jones, J. C., and Stanbrook, A., "An Experimental Investiga-

tion of the Characteristics of Some Plane and Cambered 65 ° Delta Wings at

Mach Numbers From 0.7 to 2.0," Great Brit. R&M No. 3305 (1963).

5-11

LOCKHEED MISSILES & SPACE COMPANY



LMSC-D243938

117. Rao, D. M., "Hypersonic Lee-Surface Heating Alleviation on-Delta Wing by

Apex-Drooping, " AIAA Journal, Vol. 9, No. 9, September 1971, pp. 1875-

1876.

118. Whitehead, A. H., Jr., and Bertram, M. H., "Alleviation of Vortex-Induced

Heating to the Lee Side of Slender Wings in Hypersonic Flow, " AIAA Journal,

Vol. 9, No. 9, September 1971, pp. 1870-1872.

119. Kirkpatrick, D. L. I. and Field, J. D., "Experimental Investigation of the

Positions of the Leading Edge Vortices Above Slender Delta Wings With Vari-

ous Rhombic Cross-Sections in Subsonic Conical Flow, " Great Brit. RAE

Tech. Report No. 66068 (1966).

120. Bird, J., "Tuft-Grid Surveys at Low Speeds for Delta Wings, " NASA TND-

5045, February 1969.

121. Buell, D. A., "Some Sources of Ground-Wind Loads in Launch Vehicles,"

Proceedings of AIAA Fifth Annual Structures and Materials Conference, Palm

Springs, California, 1-3 April 1964, pp. 178-183, (see also NASA TND-1893,

1963).

122. Morkovin, M. V., Prepared Comment to the Above Paper by Buell, AIAA

Fifth Annual Structures and Materials Conference, Palm Springs, California,

1-3 April 1964.

123. Moul, M. J. and Paulson, J. W., "Dynamic Lateral Behavior of High Perform-

ance Aircraft, " NACA RML 58E16, August 1958.

124. Ericsson, L. E. and Reding, J. P., "Dynamic Stall Simulation Problems,"

Journal of Aircraft, Vol. 8, No. 7, July 1971, pp. 579-583.

125. Stanewsky, E. and Hicks, G., "Scaling Effects on Shock-Boundary Layer Inter-

action in Transonic Flow, " AFFDL-TR-68-11, March 1968.

126. Zonars, D., Lowndes, H. B., and Kolb, A. W., "Ground Testing, " AIAA

68-1084, October 1968.

127. Loving, D. L., "Wind-Tunnel-Flight Correlation of Shock-Induced Separation

Flow, " NASA TN D-3580, 1966.

5-12

LOCKHEED MISSILES & SPACE COMPANY



LMSC-D243938

128. Blackwell, J. A., Jr., "Preliminary Study of Effects of Reynolds Number and

Boundary-Layer Transition Location on Shock-Induced Separation, " NASA TN

D-5003, January 1969.

129. Ericsson, L. E., "Effect of Boundary Layer Transition on Vehicle Dynamics,"

J. Spacecraft and Rockets, Vol. 6, No. 12, December 1969, pp. 1404-1409.

130. Obremski, H. J. and Morkovin, M. V., "Application of a Quasi-Steady Stabil-

ity Model to Periodic Boundary Layers, " AIAA Journal, Vol. 7, No. 7, July

1969, pp. 1298-1301.

131. Ericsson, L. E., "Loads Induced by Terminal-Shock Boundary-Layer Inter-

action on Cone-Cylinder Bodies, " J. Spacecraft and Rockets, Vol. 7, No. 9,

September 1970, pp. 1106-1112.

132. Ericsson, L. E., "Unsteady Aerodynamics of Separating and Reattaching Flow

on Bodies of Revolution," IUTAM Symposium on Unsteady Boundary Layers,

Laval University, Quebec, 24-28 May 1971.

133. Ericsson, L. E., Reding, J. P., and Guenther, R. A., "Gust Penetration

Loads and Elastic Vehicle Response for Saturn V Launch Vehicles, " Lockheed

Missiles & Space Company, Report M-3C-70-2, July 1970.

134. Reding, J. P., "Partial Simulation of Elastic-Body Dynamics for the Upper-

Stage Apollo-Saturn Launch Vehicle, " Lockheed Missiles & Space Company

Report M-37-67-4, December 1967.

135. Reding, J. P., "Forces Induced on Bodies in Free Wakes and Three-Dimensional

Cavities, " Lockheed Missiles & Space Company, Report LMSC/6E7990,

December 1968.

136. Coats, J. P., "Static and Dynamic Testing of Conical Trailing Decelerators

for the Pershing Re-Entry Vehicle, " Arnold Engineering Development Center,

TN-60-188, October 1960.

137. Brownson, J. J. and Whitnah, A. M., "Determination of Drag, Stability, and

Control Characteristics for the MSC Launch Configuration (Straight Wings),"

NASA SADSAC DMS-DR-1063, (SSPD-31), March 1971.

5-13

LOCKHEED MISSILES & SPACE COMPANY



LMSC-D243938

138. Muhlstein, L., Jr., "Buffet Response of Space Shuttle Launch Configurations

as Determined by Tests of an Aeroelastic Model, " NASA Space Shuttle Tech-

nology Conference, Vol. II, NASA TM-X-2274, March 2-4, 1971.

139. Coe, C. F., Dods, J. B., Robinson, R. C., and Mayes, W. H., "Preliminary

Measurements and Flow Visualization Studies of Pressure Fluctuations on

Space Shuttle Configurations, " NASA Space Shuttle Technology Conference,

Vol. II, NASA TM X-2274, March 2-4, 1971.

140. Watts, L., "Study to Develop a Solution for Configuration Instability for the

0. 003366 Scale S-IC/NR NCR Orbiter, " NASA SADSAC DMS-DR-1091, May

1971.

141. Glauz, W. D. and Blackburn, R. R., "Study of Indicial Aerodynamic Forces

on Multistage Space Vehicle Systems, Vol. I Application of Theory to Basic

Geometries and to the Saturn V," Midwest Research Institute Final Report

28 June 1962-Sepatember 1968.

5-14

LOCKHEED MISSILES & SPACE COMPANY



LMSC-D243938

Appendix A

NOMENCLATURE

A axial force, kg: coefficient CA = A/(pooU2O/2)S

a speed of sound, m/sec

AR aspect ratio, AR = b2/S

b wing span, m

c and c reference length, m, c = delta wing root chord

d reference length, m (maximum diameter for body of revolution)

D equivalent elastic body damping derivative

f frequency, cycles per second

L lift, kg: coefficient CL = L/(poU2 /2)S

2 rolling moment kg-m: coefficient C = P/(p U 2 /2)Sc length, m

M Mach number, M = a/U

Mp pitching moment, kg-m: coefficient Cm = Mp/(pO U/2)Sc

N normal force, kg: coefficient CN = M/(p U2 /2)S

n yawing moment, kg-m: coefficient n/(p U2/2)Sc

p pressure, kg/m2: coefficient Cp = (p -p)/(p U2/2) roll rate, rad/sec

q pitch rate rad/sec

R and R Reynolds number based on c
c

2S reference area, m2

t time, sec

U and UOO free stream velocity, m/sec

U convection velocity, m/sec
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x horizontal coordinate, m

Y side force, kg: coefficient Cy = Y/(p~U2/2)S

y lateral coordinate, m

z vertical coordinate, m

a angle of attack, radian or deg

,P sideslip angle, radian or deg

-y rotation of plane of symmetry of forebody vorticies, radian or deg (Fig. 63)

A increment

77 nondimensional span, y/c

6 control deflection, radian or deg

61 modal deflection at first antinode, m

6 maximum modal deflection, mmax

6 TE trailing edge modal deflection

damping, fraction of critical

A sweep angle of leading edge, radian or deg

0 flow reattachment angle, radian or deg (Fig. 81)

A0 angle of attack perturbation, radian or deg

p air density, kg-sec2/m4

oP roll angle, radian or deg

coning angle, radian or deg

yaw angle, radian or deg

c)w oscillation frequency, radians/sec: w = 27rf

Subscripts

AC aerodynamic center

b base

A-2
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CG center of gravity

det detached shock wave

L left

2 lower

incip incipient

P a/ap

q a/aq

R right

r rudder

s separated flow or stall

TE trailing edge

u upper

V vortex induced

free stream conditions

c~ a/aae

p a/ap

6 a/ad

Superscripts

i induced, e.g. CL -separation induced lift coefficient

Differential

aa/at

/~ ap/at
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Appendix B*

LAUNCH CONFIGURATION AEROELASTIC STABILITY

In addition to the study of the unsteady aerodynamics of the delta orbiter a small com-

panion study was made of the unsteady aerodynamics of the boost configuration. The

objective was to determine if there were unsteady aerodynamic effects at work which

might degrade the aeroelastic stability of the boost configurations.

As mentioned in the introduction it is this application of the quasi-steady technique to

the aeroelastic stability of launch vehicles dominated by separated flow that is its most

notable success. In order to establish the veracity of the technique the results of its

application to the Saturn boosters will re reviewed.

That the Apollo-Saturn V booster is dominated by separated flow is evident in the

shadowgraph in Figure B-1. The various regions of separated flow drastically affect

the aerodynamic loads over the command module and the various interstage frustums

(Figure B-2). The wake of Apollo escape rocket is the most striking separated flow

feature in the flow photograph of Figure B-1. Measurements of the time history of the

time history of the escape rocket load indicate that the load lags the motion of the

escape rocket. This lag is well predicted from the attached to separated flow axial

force ratio (Figure B-3 and Ref. 134). That is (CA/CAS)1/ = (q/q) 1/2 = U/US

This, of course, tacitly assumes incompressible flow which should not be too bad an

assumption for the induced wake flow. The axial force ratio is also used to extract

the load induced by the escape rocket from force distribution measurements (Ref. 2).

Using this quasi-steady technique, the aerodynamic damping of the escape rocket -

command module combination was predicted. The results are in good agreement with

experiment (Figure B-4 and Ref. 135). The most notable feature of this comparison

is that the aerodynamic undamping of the disk on configuration is well predicted.

*The authors gratefully acknowledge the contributions made by Lt. H. G. Chalkley,
U. S. N. to this launch vehicle analysis during his Education-With-Industry tour at
LMSC, July 6 - August 13, 1971.
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Fig. B-1 Shadowgraph of Flow Over Saturn-V Launch Vehicle at M = 1.46 
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Fig. B-2 Static Load Distribution on the Saturn-V Launch Vehicle at M = 1.3 (Ref. 133)
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Likewise, the technique successfully predicted the aerodynamic damping of a fully

elastic model (Ref. 18) of the Saturn I booster (Figure B-5 and Ref. 2).

There was some good fortune involved in the Apollo-Saturn results. Later measurements

of the loads on bodies in wakes (Ref. 135) indicate the existence of so-called "upsteam

communication" effects (Figure B-6). That is, when the submerged body penetrates the

wake neck the cross flow developed on the submerged body at angle of attack causes an

upwash in the recirculation region that induces a further wake asymmetry and greater

submerged body load. This is opposed by a tendency of the windward wake boundary

to be pushed outward due to back pressure effects. It so happened that the Apollo

escape tower was a critical length such that these two effects just cancelled, Fig. B-6.

This is very fortunate as the Apollo-Saturn dynamics would otherwise have been a

whole lot more complicated as indicated by the dynamics of trailing decelerators. This

"upstream communication" effect has been shown to be the cause of one type of

decelerator instability (Figure B-7 and Ref. 7).

There is evidence that upstream effects can occur on the parallel stage shuttle boost

configuration (Figure B-8 and Ref. 137). The booster tail evidently affects the

orbiter loads through the wake recirculation region.

These upstream loads are neglected in the presented estimate of the yaw damping of

a parallel stage, straight wing, ascent configuration. The elastic modes were taken

from Ref. 138 (Fig. B-9). It is assumed that the orbiter wake affected only the

booster tail load for yaw oscillations, which is a reasonable first order approximation.

However, it is unknown how much of the total tail load (from Ref. 137) is the result of

the orbiter wake. Thus, Figure B-10 presents the aerodynamic damping of the first

two yaw modes assuming the tail load varies all the way from being completely the

result of the orbiter wake (ACytail/Cytail = 1. 0) to being completely insensitive to

the orbiter (A/CYtail/CYtail = O) . The first mode shows very little likelihood of

aerodynamic undamping while the second mode shows a considerable likelihood of

aerodynamic undamping. The likelihood of aerodynamic undamping seems considerable

when one considers that the Apollo escape rocket wake accounted for as much as 80

percent of the command module load. It would seem that the thin booster tail will be

equally as dominated by the orbiter wake flow.
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O QUASI-STEADY PREDICTIONS
A EXPERIMENTAL RESULTS
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Fig. B-5 Aerodynamic Damping at a = 0 of Apollo-Saturn I Launch
Vehicle with Disk-On Escape Rocket (Ref. 3)
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Fig. B-6 Correlation of Wake Source Base Pressure Sensitivity With Submerged Conic
Forebody Local Loads (Ref. 135)
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Fig. B-7 Correlation of Instability Region With Wake Neck Induced Drag Rise
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Fig. B-8 Launch Configuration, Upstream Communication Load (Ref. 137)
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Fig. B-9 Yaw Plane Bending Modes (Ref. 138)
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Fig. B-10 Effect of Relative Magnitude of Induced Booster Tail Load on Yaw Damping
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Calculations of the aerodynamic damping of the first two pitch modes (Figure B-1l)

were also accomplished (mode shapes again from Ref. 138). The booster wing and

horizontal tail surfaces are affected by booster interference as indicated by static

experimental results (Ref. 137). These data allowed extraction of the interference

loads. Coe' s flow visualization results (Ref. 139) indicate that the downwash from the

orbiter wing is the primary source of interference on the booster wing while the down-

wash from the orbiter horizontal tail dmoninates the booster horizontal tail loads.

The resulting estimates of the damping derivatives show that thefirst pitch mode will

be aerodynamically damped while the second mode is undamped (Figure B-12).

Similar computations were carried out on a series stage configuration. The configura-

tion was a NAR delta orbiter atop a S-1C stage. The S-1C stage had large tail fins

for static stability during boost (e.g. sketch in Figure B-15). There were sufficient

wind tunnel results (Ref. 140) to deduce the magnitude of the orbiter wing-booster

tail interference load. This interference effect was assumed to be the result of the

downwash induced by the orbiter wing which in turn is the result of wing lift, thus,

of wing angle of attack. No mode shape estimates were available so it was assumed

that the mode shape was similar to that of the Saturn 203 vehicle which was essentially

two stiff stages with a weak interstage (the interstage is an antinode of the first three

bending modes). Thus, the first three modes were approximated by straight line seg-

ments and the critical interstage to tail deflection ratio was computed. * Only the

second mode indicated undamping. The second mode stability boundaries for

M = 0.9 and 1.2 are presented in Figure B-13. That the mode shapes defined by

the stability boundary are realistic is indicated by the comparison with an actual

Saturn 203 mode shape, Figure B-14.

In conclusion, rough order of magnitude estimates of the aerodynamic damping of

parallel and series stage shuttle launch configurations indicate that aerodynamic un-

damping of the at least one of the lower elastic modes is likely. The likelihood is

considered great enough to warrent more detailed analysis.

*By using straight line segments the interstage deflection is related to the slope of the
delta wing which in turn determines downwash. Thus, the interstage deflection (61)
and the tail or fin deflection (6 T. E ) are indicative of the relative magnitude of local
and induced loads.
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Fig. B-13 Second Mode Aerodynamic Damping Bounds for S-1C NAR Orbiter Launch
Configuration
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Fig. B-14 Mode Shape Comparison for S-1C-NAR Orbiter Launch Configuration
and the Saturn 203 Launch Vehicle
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